You are here: Home » News-ANI » Health
Business Standard

Scientists discover association of rare childhood disease with cancer gene

ANI  |  Washington D.C [US] 

In a recent research, scientists have discovered an important molecular link between a rare childhood genetic disease, Fanconi anemia and a major gene called PTEN.

Published in the Scientific Reports journal, the discovery improves the understanding of the molecular basis of Fanconi anemia and could lead to improved treatment outcomes for some patients.

According to Niall Howlett, a leading expert on Fanconi anemia, the disease is characterized by birth defects, bone marrow failure and increased risk.

He said the genes that play a role in the development of the disease are also important in the development of hereditary breast and ovarian cancer.

Howlett's new study now establishes a molecular link between Fanconi anemia and a gene strongly associated with uterine, prostate and brain cancer.

About 1 in 150,000 children in the United States is born with Fanconi anemia.

"People often ask why we study such a rare disease," said Howlett, who has been studying Fanconi anemia for nearly 20 years.

Adding, "First and foremost, there is no cure or effective treatments for it. So a greater understanding of the molecular basis of Fanconi anemia is critical to address this need."

In addition, there are countless examples of how the study of Fanconi anemia has greatly benefited the general population.

The first umbilical cord blood transplant, for example, was performed with a Fanconi anemia patient. Bone marrow transplants have become much safer and more effective because of studies with Fanconi anemia patients.

And new breast and ovarian genes have been discovered as a result of studies on the molecular biology of Fanconi anemia.

Howlett's current research is another example of the broader impact of Fanconi anemia studies.

The URI researcher speculated about the existence of a biochemical link between Fanconi anemia and PTEN.

Mutations in PTEN occur frequently in uterine, prostate and brain cancer.

"The PTEN gene codes for a phosphatase - an enzyme that removes phosphate groups from proteins. Many Fanconi anemia proteins have phosphate groups attached to them when they become activated. However, how these phosphate groups are removed is poorly understood," explained Howlett.

The cells from Fanconi anemia patients are characteristically sensitive to a class of drugs widely used in chemotherapy called DNA crosslinking agents.

"So we performed an experiment to determine if Fanconi anemia and PTEN were biochemically linked," he said.

Adding, "By testing if cells with mutations in the PTEN gene were also sensitive to DNA crosslinking agents, we discovered that Fanconi anemia patient cells and PTEN-deficient cells were practically indistinguishable in terms of sensitivity to these drugs. This strongly suggested that the Fanconi anemia proteins and PTEN might work together to repair the DNA damage caused by DNA crosslinking agents."

By using epistasis analysis, a genetic method that determines if genes work together, the team found that the Fanconi anemia proteins and PTEN do indeed function together in this repair pathway.

"Before this work, Fanconi anemia and PTEN weren't even on the same radar. This is really important to understanding how this disease arises and what its molecular underpinnings are. The more we can find out about its molecular basis, the more likely we are to come up with strategies to treat the disease," he said.

The research is equally important to patients who do not have Fanconi anemia.

He said that since his study found that cells missing PTEN are highly sensitive to DNA crosslinking agents, it should be possible to predict whether a particular patient will respond to this class of chemotherapy drug by conducting a simple DNA test.

"We can now predict that if a patient has associated with mutations in PTEN, then it is likely that the will be sensitive to DNA crosslinking agents," he said. "This could lead to improved outcomes for patients with certain types of PTEN mutations," he concluded.

(This story has not been edited by Business Standard staff and is auto-generated from a syndicated feed.)

RECOMMENDED FOR YOU

Scientists discover association of rare childhood disease with cancer gene

In a recent research, scientists have discovered an important molecular link between a rare childhood genetic disease, Fanconi anemia and a major cancer gene called PTEN.Published in the Scientific Reports journal, the discovery improves the understanding of the molecular basis of Fanconi anemia and could lead to improved treatment outcomes for some cancer patients.According to Niall Howlett, a leading expert on Fanconi anemia, the disease is characterized by birth defects, bone marrow failure and increased cancer risk.He said the genes that play a role in the development of the disease are also important in the development of hereditary breast and ovarian cancer.Howlett's new study now establishes a molecular link between Fanconi anemia and a gene strongly associated with uterine, prostate and brain cancer.About 1 in 150,000 children in the United States is born with Fanconi anemia."People often ask why we study such a rare disease," said Howlett, who has been studying Fanconi anemia ...

In a recent research, scientists have discovered an important molecular link between a rare childhood genetic disease, Fanconi anemia and a major gene called PTEN.

Published in the Scientific Reports journal, the discovery improves the understanding of the molecular basis of Fanconi anemia and could lead to improved treatment outcomes for some patients.

According to Niall Howlett, a leading expert on Fanconi anemia, the disease is characterized by birth defects, bone marrow failure and increased risk.

He said the genes that play a role in the development of the disease are also important in the development of hereditary breast and ovarian cancer.

Howlett's new study now establishes a molecular link between Fanconi anemia and a gene strongly associated with uterine, prostate and brain cancer.

About 1 in 150,000 children in the United States is born with Fanconi anemia.

"People often ask why we study such a rare disease," said Howlett, who has been studying Fanconi anemia for nearly 20 years.

Adding, "First and foremost, there is no cure or effective treatments for it. So a greater understanding of the molecular basis of Fanconi anemia is critical to address this need."

In addition, there are countless examples of how the study of Fanconi anemia has greatly benefited the general population.

The first umbilical cord blood transplant, for example, was performed with a Fanconi anemia patient. Bone marrow transplants have become much safer and more effective because of studies with Fanconi anemia patients.

And new breast and ovarian genes have been discovered as a result of studies on the molecular biology of Fanconi anemia.

Howlett's current research is another example of the broader impact of Fanconi anemia studies.

The URI researcher speculated about the existence of a biochemical link between Fanconi anemia and PTEN.

Mutations in PTEN occur frequently in uterine, prostate and brain cancer.

"The PTEN gene codes for a phosphatase - an enzyme that removes phosphate groups from proteins. Many Fanconi anemia proteins have phosphate groups attached to them when they become activated. However, how these phosphate groups are removed is poorly understood," explained Howlett.

The cells from Fanconi anemia patients are characteristically sensitive to a class of drugs widely used in chemotherapy called DNA crosslinking agents.

"So we performed an experiment to determine if Fanconi anemia and PTEN were biochemically linked," he said.

Adding, "By testing if cells with mutations in the PTEN gene were also sensitive to DNA crosslinking agents, we discovered that Fanconi anemia patient cells and PTEN-deficient cells were practically indistinguishable in terms of sensitivity to these drugs. This strongly suggested that the Fanconi anemia proteins and PTEN might work together to repair the DNA damage caused by DNA crosslinking agents."

By using epistasis analysis, a genetic method that determines if genes work together, the team found that the Fanconi anemia proteins and PTEN do indeed function together in this repair pathway.

"Before this work, Fanconi anemia and PTEN weren't even on the same radar. This is really important to understanding how this disease arises and what its molecular underpinnings are. The more we can find out about its molecular basis, the more likely we are to come up with strategies to treat the disease," he said.

The research is equally important to patients who do not have Fanconi anemia.

He said that since his study found that cells missing PTEN are highly sensitive to DNA crosslinking agents, it should be possible to predict whether a particular patient will respond to this class of chemotherapy drug by conducting a simple DNA test.

"We can now predict that if a patient has associated with mutations in PTEN, then it is likely that the will be sensitive to DNA crosslinking agents," he said. "This could lead to improved outcomes for patients with certain types of PTEN mutations," he concluded.

(This story has not been edited by Business Standard staff and is auto-generated from a syndicated feed.)

image
Business Standard
177 22

Scientists discover association of rare childhood disease with cancer gene

In a recent research, scientists have discovered an important molecular link between a rare childhood genetic disease, Fanconi anemia and a major gene called PTEN.

Published in the Scientific Reports journal, the discovery improves the understanding of the molecular basis of Fanconi anemia and could lead to improved treatment outcomes for some patients.

According to Niall Howlett, a leading expert on Fanconi anemia, the disease is characterized by birth defects, bone marrow failure and increased risk.

He said the genes that play a role in the development of the disease are also important in the development of hereditary breast and ovarian cancer.

Howlett's new study now establishes a molecular link between Fanconi anemia and a gene strongly associated with uterine, prostate and brain cancer.

About 1 in 150,000 children in the United States is born with Fanconi anemia.

"People often ask why we study such a rare disease," said Howlett, who has been studying Fanconi anemia for nearly 20 years.

Adding, "First and foremost, there is no cure or effective treatments for it. So a greater understanding of the molecular basis of Fanconi anemia is critical to address this need."

In addition, there are countless examples of how the study of Fanconi anemia has greatly benefited the general population.

The first umbilical cord blood transplant, for example, was performed with a Fanconi anemia patient. Bone marrow transplants have become much safer and more effective because of studies with Fanconi anemia patients.

And new breast and ovarian genes have been discovered as a result of studies on the molecular biology of Fanconi anemia.

Howlett's current research is another example of the broader impact of Fanconi anemia studies.

The URI researcher speculated about the existence of a biochemical link between Fanconi anemia and PTEN.

Mutations in PTEN occur frequently in uterine, prostate and brain cancer.

"The PTEN gene codes for a phosphatase - an enzyme that removes phosphate groups from proteins. Many Fanconi anemia proteins have phosphate groups attached to them when they become activated. However, how these phosphate groups are removed is poorly understood," explained Howlett.

The cells from Fanconi anemia patients are characteristically sensitive to a class of drugs widely used in chemotherapy called DNA crosslinking agents.

"So we performed an experiment to determine if Fanconi anemia and PTEN were biochemically linked," he said.

Adding, "By testing if cells with mutations in the PTEN gene were also sensitive to DNA crosslinking agents, we discovered that Fanconi anemia patient cells and PTEN-deficient cells were practically indistinguishable in terms of sensitivity to these drugs. This strongly suggested that the Fanconi anemia proteins and PTEN might work together to repair the DNA damage caused by DNA crosslinking agents."

By using epistasis analysis, a genetic method that determines if genes work together, the team found that the Fanconi anemia proteins and PTEN do indeed function together in this repair pathway.

"Before this work, Fanconi anemia and PTEN weren't even on the same radar. This is really important to understanding how this disease arises and what its molecular underpinnings are. The more we can find out about its molecular basis, the more likely we are to come up with strategies to treat the disease," he said.

The research is equally important to patients who do not have Fanconi anemia.

He said that since his study found that cells missing PTEN are highly sensitive to DNA crosslinking agents, it should be possible to predict whether a particular patient will respond to this class of chemotherapy drug by conducting a simple DNA test.

"We can now predict that if a patient has associated with mutations in PTEN, then it is likely that the will be sensitive to DNA crosslinking agents," he said. "This could lead to improved outcomes for patients with certain types of PTEN mutations," he concluded.

(This story has not been edited by Business Standard staff and is auto-generated from a syndicated feed.)

image
Business Standard
177 22

Upgrade To Premium Services

Welcome User

Business Standard is happy to inform you of the launch of "Business Standard Premium Services"

As a premium subscriber you get an across device unfettered access to a range of services which include:

  • Access Exclusive content - articles, features & opinion pieces
  • Weekly Industry/Genre specific newsletters - Choose multiple industries/genres
  • Access to 17 plus years of content archives
  • Set Stock price alerts for your portfolio and watch list and get them delivered to your e-mail box
  • End of day news alerts on 5 companies (via email)
  • NEW: Get seamless access to WSJ.com at a great price. No additional sign-up required.
 

Premium Services

In Partnership with

 

Dear Guest,

 

Welcome to the premium services of Business Standard brought to you courtesy FIS.
Kindly visit the Manage my subscription page to discover the benefits of this programme.

Enjoy Reading!
Team Business Standard