Business Standard

Large Hadron Collider 'may be producing a new type of matter'

Press Trust of India  |  Washington 

  • ALSO READ

    Top oncologist undergoes sentence in medical negligence case

    University of Sydney to collaborate with Indian universities

    ICICI Venture to exit Express Towers

    Bangalore among top polluted megacities in the world: study

    Myna guilty of evicting native Australian birds: study

Collisions between protons and lead ions at the LHC near Geneva, Switzerland have resulted in surprising behaviour in some of the particles created by the collisions, Massachusetts Institute of Technology (MIT) reported.

When beams of particles crash into each other at high speeds, the collisions yield hundreds of new particles, most of which fly away from the collision point at close to the speed of light.

However, the Compact Muon Solenoid (CMS) team at the LHC found that in a sample of 2 million lead-proton collisions, some pairs of particles flew away from each other with their respective directions correlated.

"Somehow they fly at the same direction even though it's not clear how they can communicate their direction with one another. That has surprised many people, including us," said MIT physics professor Gunther Roland, whose group led the analysis of the collision data along with Wei Li, a former MIT postdoc who is now an assistant professor at Rice University.

The MIT heavy-ion group saw the same distinctive pattern in proton-proton collisions about two years ago. The same flight pattern is also seen when ions of lead or other heavy metals, such as gold and copper, collide with each other.

Those heavy-ion collisions produce a wave of quark gluon plasma, the hot soup of particles that existed for the first few millionths of a second after the Big Bang.

In the collider, this wave sweeps some of the resulting particles in the same direction, accounting for the correlation in their flight paths.

It has been theorised that proton-proton collisions may produce a liquid-like wave of gluons, known as colour-glass condensate.

This dense swarm of gluons may also produce the unusual collision pattern seen in proton-lead collisions, said Raju Venugopalan, a senior scientist at Brookhaven National Laboratory, who was not involved in the current research.

Venugopalan and colleagues theorised the existence of colour-glass condensate shortly before the particle direction correlation was seen in proton-proton collisions.

While protons at normal energy levels consist of three quarks, they tend to gain an accompanying cluster of gluons at higher energy levels. These gluons exist as both particles and waves, and their wave functions can be correlated with each other.

This "quantum entanglement" explains how the particles that fly away from the collision can share information such as direction of flight path, Venugopalan said.

The correlation is a very tiny effect, but it's pointing to something very fundamental about how quarks and gluons are arranged spatially within a proton, he added.

In January, the CMS collaboration plans to do several weeks of lead-proton collisions, which should allow them to establish whether the collisions really are producing a liquid, Roland said.

  

Large Hadron Collider 'may be producing a new type of matter'

Collisions at the Large Hadron Collider may have created a new type of matter known as colour-glass condensate, scientists believe.

Collisions between protons and lead ions at the LHC near Geneva, Switzerland have resulted in surprising behaviour in some of the particles created by the collisions, Massachusetts Institute of Technology (MIT) reported.

When beams of particles crash into each other at high speeds, the collisions yield hundreds of new particles, most of which fly away from the collision point at close to the speed of light.

However, the Compact Muon Solenoid (CMS) team at the LHC found that in a sample of 2 million lead-proton collisions, some pairs of particles flew away from each other with their respective directions correlated.

"Somehow they fly at the same direction even though it's not clear how they can communicate their direction with one another. That has surprised many people, including us," said MIT physics professor Gunther Roland, whose group led the analysis of the collision data along with Wei Li, a former MIT postdoc who is now an assistant professor at Rice University.

The MIT heavy-ion group saw the same distinctive pattern in proton-proton collisions about two years ago. The same flight pattern is also seen when ions of lead or other heavy metals, such as gold and copper, collide with each other.

Those heavy-ion collisions produce a wave of quark gluon plasma, the hot soup of particles that existed for the first few millionths of a second after the Big Bang.

In the collider, this wave sweeps some of the resulting particles in the same direction, accounting for the correlation in their flight paths.

It has been theorised that proton-proton collisions may produce a liquid-like wave of gluons, known as colour-glass condensate.

This dense swarm of gluons may also produce the unusual collision pattern seen in proton-lead collisions, said Raju Venugopalan, a senior scientist at Brookhaven National Laboratory, who was not involved in the current research.

Venugopalan and colleagues theorised the existence of colour-glass condensate shortly before the particle direction correlation was seen in proton-proton collisions.

While protons at normal energy levels consist of three quarks, they tend to gain an accompanying cluster of gluons at higher energy levels. These gluons exist as both particles and waves, and their wave functions can be correlated with each other.

This "quantum entanglement" explains how the particles that fly away from the collision can share information such as direction of flight path, Venugopalan said.

The correlation is a very tiny effect, but it's pointing to something very fundamental about how quarks and gluons are arranged spatially within a proton, he added.

In January, the CMS collaboration plans to do several weeks of lead-proton collisions, which should allow them to establish whether the collisions really are producing a liquid, Roland said.

  
image