You are here: Home » PTI Stories » National » News
Business Standard

Robotic implant can help stunted organs regrow

Press Trust of India  |  Boston 

Scientists have developed an implantable medical robot that can stimulate tissue growth in stunted organs without causing discomfort. The system induced cell proliferation and lengthened part of the oesophagus in a large animal by about 75 per cent, while the animal remained awake and mobile. According to the researchers from Children's Hospital in the US, the system could treat long-gap oesophageal atresia, a in which part of the oesophagus is missing, and could also be used to lengthen the small intestine in The most effective current operation for long-gap esophageal atresia, called the Foker process, uses sutures anchored on the patient's back to gradually pull on the oesophagus. To prevent the oesophagus from tearing, patients must be paralysed in a and placed on mechanical ventilation in the for one to four weeks. The long period of immobilisation can also cause medical complications such as bone fractures and "This project demonstrates proof-of-concept that miniature robots can induce organ growth inside a living being for repair or replacement, while avoiding the sedation and currently required for the most difficult cases of oesophageal atresia," said Russell Jennings, from the Children's Hospital. "The potential uses of such robots are yet to be fully explored, but they will certainly be applied to many organs in the near future," said Jennings, on the study published in the journal Science Robotics. The is attached only to the oesophagus, so would allow a patient to move freely. Covered by a smooth, biocompatible, waterproof "skin," it includes two attachment rings, placed around the oesophagus and sewn into place with sutures. A programmable control unit outside the body applies adjustable traction forces to the rings, slowly and steadily pulling the tissue in the desired direction. The device was tested in the oesophagi of pigs - five received the implant and three served as controls. The distance between the two rings was increased by small, 2.5-millimetre increments each day for 8 to 9 days. The animals were able to eat normally even with the device applying traction to its oesophagus, and showed no sign of discomfort. On day 10, the segment of oesophagus had increased in length by 77 per cent on average.

Examination of the tissue showed a proliferation of the cells that make up the oesophagus. The organ also maintained its normal diameter. "This shows we didn't simply stretch the oesophagus - it lengthened through cell growth," said Pierre Dupont, of Pediatric Cardiac Bioengineering at Children's. The research team is now starting to test the robotic system in a large animal model of

(This story has not been edited by Business Standard staff and is auto-generated from a syndicated feed.)

First Published: Thu, January 11 2018. 11:25 IST
RECOMMENDED FOR YOU