When a person loses a hand to amputation, nerves that control sensation and movement are severed, causing dramatic changes in areas of the brain that controlled these functions. As a result, areas of the brain devoted to the missing hand take on other functions.
Now, researchers from the University of Missouri have found evidence of specific neurochemical changes associated with lower neuronal health in these brain regions. Further, they report that some of these changes in the brain may persist in individuals who receive hand transplants, despite their recovered hand function.
"When there is a sudden increase or decrease in stimulation that the brain receives, the function and structure of the brain begins to change," said lead author Carmen M. Cirstea. "Using a noninvasive approach known as magnetic resonance spectroscopy (MRS) to examine areas of the brain previously involved with hand function, we observed the types of changes taking place at the neurochemical level after amputation, transplantation or reattachment."
Cirstea, with co-author Scott Frey, used MRS to evaluate the neuronal health and function of nerve cells of current hand amputees, former amputees and healthy subjects.
The researchers instructed volunteers to flex their fingers to activate sensorimotor areas in both sides of the brain. The research team then analyzed N-acetylaspartate (NAA) levels, a chemical associated with neuronal health. The researchers found that NAA values for the reattachment and transplant patients were similar to levels of amputees and significantly lower than the healthy control group.
Frey noted, "These findings show that after surgical repairs, the effects of nerve injuries on the mature brain may continue even as former amputees recover varying degrees of sensory and motor functions in replanted or transplanted hands."
Due to the small number of reattachment and transplant patients studied, the researchers said that the results should be interpreted with caution until more work is completed.
The study appears in the Journal of Neurophysiology.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
