"Severe sea states, such as tsunamis, rogue waves, storms, landslides, and even meteorite fall, can all generate acoustic-gravity waves," said Usama Kadri, a research affiliate at Massachusetts Institute of Technology's (MIT).
"We hope we can use these waves to set an early alarm for severe sea states in general and tsunamis in particular, and potentially save lives," Kadri said.
Acoustic-gravity waves are very long sound waves that cut through the deep ocean at the speed of sound.
They are typically triggered by violent events in the ocean, including underwater earthquakes, explosions, landslides, and even meteorites, and they carry information about these events around the world in a matter of minutes.
Researchers at MIT have now identified a less dramatic though far more pervasive source of acoustic-gravity waves - surface ocean waves.
These waves, known as surface-gravity waves, do not travel nearly as fast, far, or deep as acoustic-gravity waves, yet under the right conditions, they can generate the powerful, fast-moving, and low-frequency sound waves.
They found that when two surface-gravity waves, heading towards each other, are oscillating at a similar but not identical frequency, their interaction can release up to 95 per cent of their initial energy in the form of an acoustic wave, which in turn carries this energy and travels much faster and deeper.
This interaction may occur anywhere in the ocean, in particular in regions where surface-gravity waves interact as they reflect from continental shelf breaks, where the deep-sea suddenly faces a much shallower shoreline.
Understanding this relationship between surface-gravity waves and acoustic-gravity waves allows researchers to describe how energy is exchanged between gravity and acoustic waves, researchers said.
Kadri calculated that if two surface waves flow towards each other at roughly the same frequency and amplitude, as they meet and roll through each other the majority of their energy - up to 95 per cent - can be turned into a sound wave, or acoustic-gravity wave.
This new understanding of wave interactions can be used for tsunami detection, researchers said.
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
