A protein cocktail that helps mend a broken heart

Image
ANI Washington D.C. [USA]
Last Updated : Aug 15 2017 | 1:07 PM IST

A team of researchers has uncovered a novel role for transcription factor Gata4 in reducing the post-heart attack fibrosis.

During a heart attack, blood stops flowing into the heart; starved for oxygen, part of the heart muscle dies. The heart muscle does not regenerate; instead it replaces dead tissue with scars made of cells called fibroblasts that do not help the heart pump. The heart weakens; most people who had a severe heart attack will develop heart failure, which remains the leading cause of mortality from heart disease.

"Our most important goal is to treat post-heart attack cardiac failure," said researcher Megumi Mathison from Baylor College of Medicine. "Our approach is to restore cardiac function by reprogramming scar tissue into cardiomyocytes."

In the Laboratory for Cardiac Regeneration, led by Todd K. Rosengart, a team of researchers showed that administration of a cocktail made of transcription factors Gata4, Mef2c and Tbx5 (GMT) resulted in less scar tissue, or fibrosis, and up to a 50 percent increase in cardiac function in small animal models of the disease.

This result was presumed to be mostly a consequence of the reprograming of heart fibroblasts into cardiomyocyte-like cells. Interestingly, the Rosengart team noticed that reduced fibrosis and improved cardiac function far exceeded the extent of induced new cardiomyocyte-like cells. "This observation suggested the existence of unexplored and non-optimized underlying mechanisms," Rosengart said.

The research team investigated in more detail how the GMT cocktail activated mechanisms that reduced fibrosis. They found the first evidence that, of the three components in the GMT cocktail, only Gata4 was able to reduce post-heart attack fibrosis and improve cardiac function in a rat model of heart attack.

Further exploration of the molecular mechanism mediating this novel effect showed that administering Gata4 to rat fibroblasts in the lab resulted in reduced expression of Snail, the master gene of fibrosis.

The study appears in the Journal of Thoracic and Cardiovascular Surgery.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Aug 15 2017 | 1:07 PM IST

Next Story