Future of fuel may lie in methane-consuming bacteria

Image
ANI
Last Updated : May 10 2019 | 10:31 PM IST

Researchers have finally unveiled the mechanism behind the conversion of methane into readily usable methanol in methanotrophic bacteria. The research could contribute to the future of fuel.

The study published in the journal Science has found that the enzyme, present in the methanotrophic bacteria, responsible for the conversion of methane into methanol catalyses the reaction at a site that contains only one copper ion.

The finding could lead to newly designed, human-made catalysts that can convert methane -- a highly potent greenhouse gas -- to readily usable methanol with the same effortless mechanism.

"The identity and structure of the metal ions responsible for catalysis have remained elusive for decades. Our study provides a major leap forward in understanding how bacteria methane-to-methanol conversion takes place," said Northwestern's Amy C. Rosenzweig, co-senior author of the study.

"By identifying the type of copper centre involved, we have laid the foundation for determining how nature carries out one of its most challenging reactions," said Brian M. Hoffman, co-senior author.

By oxidizing methane and converting it to methanol, methanotrophic bacteria (or 'methanotrophs') can pack a punch or two. Not only are they removing harmful greenhouse gas from the environment, but they are also generating a readily usable, sustainable fuel for automobiles, electricity and more.

Current industrial processes to catalyze a methane-to-methanol reaction require tremendous pressure and extreme temperatures, reaching higher than 1,300 degrees Celsius. Methanotrophs, however, perform the reaction at room temperature and 'for free'.

"While copper sites are known to catalyze methane-to-methanol conversion in human-made materials, methane-to-methanol catalysis at a monocopper site under ambient conditions is unprecedented," said Matthew O. Ross, the paper's first author.

"If we can develop a complete understanding of how they perform this conversion at such mild conditions, we can optimize our own catalysts," said Ross.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: May 10 2019 | 10:23 PM IST

Next Story