Soon, more close-fitting, comfortable, user-friendly prosthetics

Image
ANI Washington D.C
Last Updated : Aug 01 2016 | 4:07 PM IST

A newly-developed mechanical metamaterial has brought more close-fitting, comfortable and user-friendly prosthetics closer to reality.

Researchers at Tel Aviv University, FOM Institute AMOLF and Leiden University in the Netherlands developed a new approach to manufacturing mechanical "metamaterials" - synthetic composite materials with structures and properties not usually found in natural materials - that can be programmed to deform in a uniquely complex manner.

The breakthrough may have future applications in soft robotics and wearable technologies.

Researchers Yair Shokef and Martin van Hecke illustrated their approach through a three-dimensional printing of a metamaterial cube. A smiley-face pattern emerged on the side of the cube when it was compressed between custom-patterned surfaces.

"We started with a series of flexible building blocks, or bricks, that had deformation properties that varied with their position," said Shokef. "The blocks were able to change their shape when we applied pressure. From there, we were able to develop a new design principle to enable these bricks to be oriented and assembled into a larger metamaterial with machine-like functionalities."

The metamaterial has the unusual property that spatially-patterned compression in one direction leads to predictable spatially-patterned deformation (dents and protrusions) in other directions.

"A pattern of specific bulges appears when our seemingly normal cube is compressed," said Dr. Shokef. "Using metamaterials, we can 'program' the material's behavior by carefully designing its spatial structure."

The researchers calculated the number of possible stacks for different cubes of building blocks. They then developed a cube of 10x10x10 centimeter blocks on which a smiley face appears when the cube is compressed. This demonstrated that any given pattern can be produced on a cube's surface.

There are many applications on the horizon for this new basic research. "This type of programmable 'machine material' could be ideal for prostheses or wearable technology in which a close fit with the body is important," Dr. Shokef said. "If we can make the building blocks even more complex or produce these from other materials, the possibilities really are endless."

The research is published in the journal Nature.

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Aug 01 2016 | 3:46 PM IST

Next Story