Exploding star's shockwave captured for the first time

Image
IANS Washington
Last Updated : Mar 22 2016 | 1:22 PM IST

Analysing data from NASA's planet-hunter, the Kepler space telescope, astronomers have captured for the first time a brilliant flash of an exploding star's shockwave or "shock breakout" in the optical wavelength or visible light.

The team led by Peter Garnavich, astrophysics professor at the University of Notre Dame in Indiana, analysed light captured by Kepler every 30 minutes over a three-year period from 500 distant galaxies, searching some 50 trillion stars.

They were hunting for signs of massive stellar death explosions known as supernovae.

For the first time, a supernova shockwave has been observed in the optical wavelength or visible light as it reaches the surface of the star.

This early flash of light is called a "shock breakout".

The explosive death of this star, called KSN 2011d, as it reaches its maximum brightness takes 14 days.

The shock breakout itself lasts only about 20 minutes, so catching the flash of energy is an investigative milestone for astronomers.

In 2011, two of these massive stars, called red supergiants, exploded while in Kepler's view.

The first behemoth, KSN 2011a, is nearly 300 times the size of our sun and a mere 700 million light years from Earth.

The second, KSN 2011d, is roughly 500 times the size of our sun and around 1.2 billion light years away.

"To put their size into perspective, Earth's orbit about our sun would fit comfortably within these colossal stars," said Garnavich.

The "shock breakout" itself lasts only about 20 minutes, so catching the flash of energy is an investigative milestone for astronomers.

"In order to see something that happens on timescales of minutes, like a shock breakout, you want to have a camera continuously monitoring the sky," Garnavich added.

Supernovae like these - known as Type II - begin when the internal furnace of a star runs out of nuclear fuel causing its core to collapse as gravity takes over.

The two supernovae matched up well with mathematical models of Type II explosions reinforcing existing theories. But they also revealed what could turn out to be an unexpected variety in the individual details of these cataclysmic stellar events.

Understanding the physics of these violent events allows scientists to better understand how the seeds of chemical complexity and life itself have been scattered in space and time in our Milky Way galaxy

"All heavy elements in the universe come from supernova explosions. For example, all the silver, nickel, and copper in the earth and even in our bodies came from the explosive death throes of stars," explained Steve Howell, project scientist for NASA's Kepler and K2 missions.

The research paper reporting this discovery has been accepted for publication in the Astrophysical Journal.

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Mar 22 2016 | 1:12 PM IST

Next Story