We are still premature when it comes to life in space and life on other planets could be billions of years older than ours, researchers say.
The universe is 13.8 billion years old while our planet formed just 4.5 billion years ago.
New theoretical work suggests that present-day life is actually premature from a cosmic perspective.
"If you ask, 'When is life most likely to emerge?' you might naively say, 'Now'. But we find that the chance of life grows much higher in the distant future," said lead study author Avi Loeb of the Harvard-Smithsonian Center for Astrophysics.
Life as we know it first became possible about 30 million years after the Big Bang when the first stars seeded the cosmos with the necessary elements like carbon and oxygen.
Life will end 10 trillion years from now when the last stars fade away and die.
Loeb and his colleagues considered the relative likelihood of life between those two boundaries.
The dominant factor proved to be the lifetimes of stars.
The higher a star's mass, the shorter its lifetime. Stars larger than about three times the Sun's mass will expire before life has a chance to evolve.
Conversely, the smallest stars weigh less than 10 percent as much as the Sun.
They will glow for 10 trillion years, giving life ample time to emerge on any planets they host.
As a result, the probability of life grows over time. In fact, chances of life are 1000 times higher in the distant future than now.
"So then you may ask, why aren't we living in the future next to a low-mass star?" Loeb asked.
One possibility is we're premature.
"Another possibility is that the environment around a low-mass star is hazardous to life," he added.
Although low-mass, red dwarf stars live for a long time, they also pose unique threats.
In their youth, they emit strong flares and ultraviolet radiation that could strip the atmosphere from any rocky world in the habitable zone.
To determine which possibility is correct -- our premature existence or the hazard of low-mass stars -- Loeb recommended studying nearby red dwarf stars and their planets for signs of habitability.
The paper describing the work is forthcoming in the Journal of Cosmology and Astroparticle Physics.
--IANS
na/vm
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
