Researchers in materials science and mechanical engineering at the University of Michigan (UM) have developed a new technique that can change plastic's molecular structure to help it cast off heat.
The new technique uses a process that engineers the structure of the material itself, considering the nature of plastics made of long chains of molecules that are tightly coiled and tangled like a bowl of spaghetti, Xinhua reported.
It used a chemical process to expand and straighten the molecule chains, giving heat energy a more direct route through the material.
To accomplish this, the researchers first dissolved a typical polymer, or plastic in water, then added electrolytes to the solution to raise its pH, making it alkaline.
The individual links in the polymer chain, called monomers, take on a negative charge, which causes them to repel each other. As the monomers spread apart, they unfurl the chain's tight coils.
Finally, water and polymer solution is sprayed onto plates using a common industrial process called spin casting, which reconstitutes it into a solid plastic film.
The uncoiled molecule chains within the plastic make it easier for heat to travel through it.
Researchers also found that the process has a secondary benefit: it stiffens the polymer chains and helps them pack together more tightly, making them even more thermally conductive.
"Polymer molecules conduct heat by vibrating, and a stiffer molecule chain can vibrate more easily," said Apoorv Shanker, a materials science and engineering graduate student.
"Think of a tightly stretched guitar string compared to a loosely coiled piece of twine. The guitar string will vibrate when plucked, the twine won't. Polymer molecule chains behave in a similar way," Shanker added.
The process is a major departure from previous approaches, which have focused on adding metallic or ceramic fillers to plastics, a process that is expensive as well as can change the properties of the plastic in undesirable ways.
The work has important consequences because of the large number of polymer applications where temperature is important.
The study has been published in the journal Science Advances.
--IANS
qd/
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
