Diamond worlds may have hosted universe's first life

Image
Press Trust of India Boston
Last Updated : Jun 08 2016 | 5:07 PM IST
Carbon planets consisting of graphite, carbides and diamonds possibly hosted life in the early universe, according to a new study.
Scientists suggest that searching a rare class of stars might help find these diamond worlds.
Our Earth consists of silicate rocks and an iron core with a thin veneer of water and life. But the first potentially habitable worlds to form might have been very different, researchers said.
"This work shows that even stars with a tiny fraction of the carbon in our solar system can host planets," said Natalie Mashian, graduate student at the Harvard University in the US.
"We have good reason to believe that alien life will be carbon-based, like life on Earth, so this also bodes well for the possibility of life in the early universe," she said.
The primordial universe consisted mostly of hydrogen and helium, and lacked chemical elements like carbon and oxygen necessary for life as we know it.
Only after the first stars exploded as supernovae and seeded the second generation did planet formation and life become possible.
Researchers examined a particular class of old stars known as carbon-enhanced metal-poor stars, or CEMP stars.
These anaemic stars contain only one hundred-thousandth as much iron as our Sun, meaning they formed before interstellar space had been widely seeded with heavy elements.
"These stars are fossils from the young universe," said Avi Loeb from the Harvard-Smithsonian Centre for Astrophysics.
"By studying them, we can look at how planets, and possibly life in the universe, got started," Loeb said.
Although lacking in iron and other heavy elements compared to our Sun, CEMP stars have more carbon than would be expected given their age.
This relative abundance would influence planet formation as fluffy carbon dust grains clump together to form tar-black worlds.
From a distance, these carbon planets would be difficult to tell apart from more Earth-like worlds. Their masses and physical sizes would be similar. Astronomers would have to examine their atmospheres for signs of their true nature.
Gases like carbon monoxide and methane would envelop these unusual worlds.
Researchers said that a dedicated search for planets around CEMP stars can be done using the transit technique.
"This is a practical method for finding out how early planets may have formed in the infant universe," said Loeb.
"We'll never know if they exist unless we look," said Mashian.
The study was published in the journal Monthly Notices of the Royal Astronomical Society.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Jun 08 2016 | 5:07 PM IST

Next Story