'Missing link' in origin of life on Earth found

Image
Press Trust of India Los Angeles
Last Updated : Nov 07 2017 | 3:13 PM IST
Scientists, including those of Indian origin, have discovered a compound that may have played a crucial role in the origin of life on Earth.
Researchers at The Scripps Research Institute (TSRI) in the US hypothesised that a chemical reaction called phosphorylation may have been crucial for the assembly of three key ingredients in early life forms.
These ingredients are short strands of nucleotides to store genetic information, short chains of amino acids (peptides) to do the main work of cells, and lipids to form encapsulating structures such as cell walls.
No one has ever found a phosphorylating agent that was plausibly present on early Earth and could have produced these three classes of molecules side-by-side under the same realistic conditions, researchers said.
TSRI chemists have now identified just such a compound: diamidophosphate (DAP).
"We suggest a phosphorylation chemistry that could have given rise, all in the same place, to oligonucleotides, oligopeptides, and the cell-like structures to enclose them," said Ramanarayanan Krishnamurthy, associate professor of chemistry at TSRI.
"That in turn would have allowed other chemistries that were not possible before, potentially leading to the first simple, cell-based living entities," Krishnamurthy said.
The study, published in the journal Nature Chemistry, is part of an ongoing effort by scientists around the world to find plausible routes for the epic journey from pre- biological chemistry to cell-based biochemistry.
Other researchers have described chemical reactions that might have enabled the phosphorylation of pre-biological molecules on the early Earth.
However, these scenarios have involved different phosphorylating agents for different types of molecule, as well as different and often uncommon reaction environments.
"It has been hard to imagine how these very different processes could have combined in the same place to yield the first primitive life forms," said Krishnamurthy.
Researchers, including Megha Karki, a postdoctoral research associate at TSRI, showed first that DAP could phosphorylate each of the four nucleoside building blocks of RNA in water or a paste-like state under a wide range of temperatures and other conditions.
With the addition of the catalyst imidazole, a simple organic compound that was itself plausibly present on the early Earth, DAP's activity also led to the appearance of short, RNA-like chains of these phosphorylated building blocks.
"With DAP and water and these mild conditions, you can get these three important classes of pre-biological molecules to come together and be transformed, creating the opportunity for them to interact together," Krishnamurthy added.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Nov 07 2017 | 3:13 PM IST

Next Story