New 'living diode' may power gen-next biorobots

Image
Press Trust of India Washington
Last Updated : Feb 15 2017 | 1:07 PM IST
Scientists have created a "living diode" using heart cells, an advance that could pave the way for next generation of biorobotics and novel treatments for muscle-related health problems.
Bioengineers from University of Notre Dame in the US created the muscle-based circuitry through a novel, self-forming, micro patterning approach, which can be used for cell-based information processing.
The advance takes researchers a step closer to mimicking the way biological systems interact and process information in the body - a vital step towards developing new treatments for muscular degenerative disorders, arrhythmia and limb loss.
Using muscle cells opens the door to functional, biological structures or computational tissues that would allow an organ to control and direct mechanical devices in the body.
The design arranges the two types of cells in a rectangular pattern, separating excitable cells from nonexcitable cells, allowing the team to transduce electrical signals unidirectionally and achieve a diode function using living cells.
In addition to the diode-like function, the natural pacing ability of the muscle cells allowed the researchers to pass along information embedded in the electrical signals by modulating the frequency of the cells' electrical activity.
"Muscle cells have the unique ability to respond to external signals while being connected to fibroblasts internally through intercellular junctions," said Pinar Zorlutuna, assistant professor at University of Notre Dame.
"By combining these two cell types, we have the ability to initiate, amplify and propagate signals directionally," said Zorlutuna.
"The success of these muscle-cell diodes offers a path towards linking such cell-based circuitry to a living system - and creating functional control units for biomedical engineering applications such as bioactuators or biosensors," he said.
The research presents a new option in biocomputing, which has focused primarily on using gene circuitries of genetically modified single-cells or neuronal networks doped with chemical additives to create information processing systems.
The single-cell options are slower to process information since they relay on chemical processes, and neuronal-based approaches can misfire signals, firing backward up to 10 per cent of the time.
The study was published in the journal Advanced Biosystems.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Feb 15 2017 | 1:07 PM IST

Next Story