The spots on the surface of the Sun come and go with an 11-year periodicity known as the solar cycle.
The solar cycle is driven by the solar dynamo, which is an interplay between magnetic fields, convection and rotation.
However, our understanding of the physics underlying the solar dynamo is far from complete.
Now, an international team led by researchers from Aarhus University in Denmark has found a star that can help shed light on the physics underlying the solar dynamo.
It consists of around twice as many heavy elements as in the Sun. Heavy elements are the ones heavier than hydrogen and helium.
The new study can help us understand how the irradiance of the Sun has changed over time, which is likely to have an effect on our climate, researchers said.
The team has succeeded in combining observations from the Kepler spacecraft with ground-based observations dating as far back as 1978, thereby reconstructing a 7.4-year cycle in this star.
By combining photometric, spectroscopic and asteroseismic data, the team collected the most detailed set of observations for a solar-like cycle in any star other than the Sun.
The observations revealed that the amplitude of the cycle seen in the star's magnetic field is more than twice as strong as what is seen on the Sun, and the cycle is even stronger in visible light.
Disclaimer: No Business Standard Journalist was involved in creation of this content
