Octopus skin inspires programmable camouflaging material

Image
Press Trust of India Washington
Last Updated : Oct 13 2017 | 1:07 PM IST
Scientists have developed a stretchable and programmable camouflaging material inspired by the instantaneously changing skin of octopus and cuttlefish.

For the octopus and cuttlefish, changing their skin colour and pattern to disappear into the environment is just part of their camouflage prowess, said researchers from Cornell University in the US.

These animals can also swiftly and reversibly morph their skin into a textured, three dimensional (3D) surface, giving the animal a ragged outline that mimics seaweed, coral, or other objects it detects and uses for camouflage.

Also Read

The pneumatically-activated material developed by researchers takes a cue from the 3D bumps, or papillae, that cephalopods can express in one-fifth of a second for dynamic camouflage, and then retract to swim away without the papillae imposing hydrodynamic drag.

"Lots of animals have papillae, but they cannot extend and retract them instantaneously as octopus and cuttlefish do," said Roger Hanlon, from the Marine Biological Laboratory (MBL) in the US.

"These are soft-bodied molluscs without a shell; their primary defence is their morphing skin," said Hanlon.

The breakthrough by the team was to develop synthetic tissue groupings that allow programmable, 2D stretchable materials to both extend and retract a range of target 3D shapes.

"Engineers have developed a lot of sophisticated ways to control the shape of soft, stretchable materials, but we wanted to do it in a simple way that was fast, strong, and easy to control," said James Pikul, assistant professor at the University of Pennsylvania in the US.

"We were drawn by how successful cephalopods are at changing their skin texture, so we studied and drew inspiration from the muscles that allow cephalopods to control their texture, and implemented these ideas into a method for controlling the shape of soft, stretchable materials," said Pikul.

"This is a classic example of bio-inspired engineering with a range of potential applications. For example, the material could be controllably morphed to reflect light in its 2D spaces and absorb light in its 3D shapes," Hanlon added.

(Only the headline and picture of this report may have been reworked by the Business Standard staff; the rest of the content is auto-generated from a syndicated feed.)

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Oct 13 2017 | 12:32 PM IST

Next Story