Vitamins A and C help erase 'memory' in stem cells: study

Image
Press Trust of India Melbourne
Last Updated : Oct 14 2016 | 1:42 PM IST
Vitamins A and C complement each other in erasing "memory" associated with DNA, an important effect for improving technologies geared towards regenerative medicine and stem cell therapy, scientists have found.
The two vitamins can enhance success in the challenging process of converting adult cells into stem cells, an international team including researchers from University of Otago in New Zealand have found.
Ordinary adult cells, such as those in the skin or blood, can be artificially coerced in a culture dish to resemble embryos only a few days old.
Since the 2006 discovery that this remarkable reprogramming process is possible, there has been much interest in using induced embryonic stem cells to cure human disease, said Tim Hore from Otago.
"However, hampering these efforts is the reality that adult cells are resistant to changes in their identity, partly because of chemical alterations to their DNA," said Hore, who was previously with the Babraham Institute in the UK.
He said these alterations, known as "DNA methylation" are acquired during development and provide a form of cellular memory that helps cells faithfully maintain a specialised function.
Removal of this memory is critical in order to create a developmentally potent stem cell, or to change one kind of adult cell to another.
Hore determined that adding vitamins A and C to culture dishes synergistically removes DNA methylation from embryonic stem cells.
When applied to cells during the reprogramming process, those with the desired "naive" embryonic characteristics were created in much greater numbers, he said.
"We found that both vitamins affect the same family of enzymes which actively remove DNA methylation; it turns out that vitamin A increases the number of these enzymes within the cell, and vitamin C enhances their activity," he said.
In addition to regenerative medicine, this work may have implications for other areas of biomedical importance. Loss of DNA methylation and cellular memory are a hallmark of certain cancers, so a better understanding of how this process occurs could prove significant.
"We are beginning to explore how the vitamin-induced effects we have uncovered in this study might impact on the loss of DNA methylation in certain cancers," he said.
The study appears in the journal Proceedings of the National Academy of Science (PNAS).

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Oct 14 2016 | 1:42 PM IST

Next Story