Scientists on Monday said they have achieved a world record for high data transmission over 75 kilometres of standard optical fibre, using a powerful class of micro-comb called soliton crystals.
"This is one of the most efficient transmission systems implemented in a standard telecom network, given the record amount of information that can be encoded and propagated in an optical fibre with minimum loss of data," said Professor Roberto Morandotti, of the Institut National de la Recherche Scientifique (INRS) in Canada.
Telecommunication networks use many different frequencies, or colours, to transfer as much information as possible, the researchers said.
Current networks need typically a separate laser for every colour, which is difficult and costly to set up properly, they said.
"Here, we decided to use a micro-comb to replace the multiple lasers. Like a hair comb, we can generate a set of frequencies which are equally distant, and the phase and amplitude of which can be easily and precisely controlled," explained Morandotti, co-author of the research published in the journal Nature Communications.
The ability to supply all wavelengths with a single, compact integrated chip, replacing many parallel lasers, offers the greatest benefit, in terms of performance, scalability and power consumption, according to the researchers.
"We took advantage of the fact that a frequency comb could be created with a device known as a micro-ring resonator," Morandotti said.
Previous to this work, a well-behaved comb, resulting in a so-called cavity soliton, required a special and unique balance between colour dispersion and non-linearity, the researchers said.
Such combs are typically difficult to generate and stabilise, and not really power efficient even under ideal conditions, the researchers said.
Therefore, the researchers have developed a new way to achieve them for telecom purposes.
"In particular, if the microresonator is properly designed, it is possible to get a cross point between the optical modes supported by the device," Morandotti said.
"This in turn creates the right condition for realising a different type of micro-comb, leading to so-called crystal solitons, which is both robust and user-friendly," explained Morandotti.
This work demonstrates the capability of optical micro-combs to perform in demanding and practical optical communications networks.
According to Morandotti, the proposed mechanism could be commercially implemented in five years from now since similar micro-ring resonators, intended for less demanding applications such as filtering, are already well known and commercially available.
One subscription. Two world-class reads.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
)