Just imagine India-made smart textiles that can sense what goes on around you, store data and communicate for necessary action! Well, scientists have inched closer to indigenously built wearable electronic devices, thanks to unique properties of silk.
A team of experts at the Indian Institute of Technology - Kharagpur has fashioned a hybrid material based on silk protein called silk fibroin.
This novel material has the potential to spawn prototype textile-based smart electronic devices for soldiers and defence personnel as well as for biomedical applications.
"We have designed a hybrid photo detector using zinc oxide nanostructures on gold nanoparticle-embedded silk protein for applications that combine electronics and light," Samit K. Ray, currently officiating as the Director of S.N. Bose National Centre for Basic Sciences, Kolkata (on lien), told IANS.
A photo detector operates by converting light signals to a voltage or current.
"The hybrid material can store data and can detect light, both in the ultraviolet and visible wavelength range, thereby offering greater sensitivity and scope of detection," Ray said.
The USP of the hybrid material is its flexibility, stretchability, biocompatibility and biodegradability.
"These properties are due to a combination of silk fibroin and semiconducting zinc oxide in presence of gold nanoparticles," Ray noted.
"Bombyx mori silk worms are the main producers of silk fibroins worldwide in the form of cocoons. These fibroins are attractive due to their high mechanical strength, toughness, thermal stability and biocompatibility/ biodegradability," elaborated Ray.
Although 95 per cent of commercial electronics and computing systems deploy silicon as the semi-conductor material, Ray said the team opted for zinc oxide instead.
"Conventional silicon chip is usually considered to be rigid, as brittle and breakable as window glass. Zinc oxide nanorod array embedded in silk platform is flexible and can withstand mechanical stress and bending.
"Moreover, the zinc oxide, under mechanical stress, generates electrical energy. This means these devices can be powered by the energy generated when a soldier is moving about," Ray said.
This was important for crafting self-powered, flexible photo detector (light detector) devices, according to Ray.
"In remote locations where power sources are scarce, the wearable technology can power up by mere movement of the user," added Ray.
Narendar Gogurla and Subhas C. Kundu are the co-authors of the study published in the journal Nanotechnology.
--IANS
sgh/nir/vt
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
