Scientists find novel method to make brighter green LEDs

Image
IANS New York
Last Updated : Jul 30 2016 | 5:42 PM IST

A team of researchers has found a new method for making brighter and more efficient green light-emitting diodes (LEDs), which may pave the way for developing advanced solid-state lighting.

Using an industry-standard semiconductor growth technique, researchers at the University of Illinois at Urbana Champaign created gallium nitride (GaN) cubic crystals grown on a silicon substrate that are capable of producing powerful green light for advanced solid-state lighting.

"This work is very revolutionary as it paves the way for novel green wavelength emitters that can target advanced solid-state lighting on a scalable CMOS-silicon platform by exploiting the new material, cubic gallium nitride," said Can Bayram, who pioneered the study.

The union of solid-state lighting with sensing and networking to enable smart visible lighting is further poised to revolutionise how we utilise light.

"The CMOS-compatible LEDs can facilitate fast, efficient, low-power, and multi-functional technology solutions with less of a footprint and at an ever more affordable device price point for these applications," Bayram added.

Typically, GaN forms in one of two crystal structures: hexagonal or cubic. Hexagonal GaN is thermodynamically stable and is by far the more conventional form of the semiconductor.

However, this structure is prone to a phenomenon known as polarisation that prevents them from combining, which, in turn, diminishes the light output efficiency.

Bayram's team made the cubic GaN by using lithography and isotropic etching to create a U-shaped groove on Si (100). This non-conducting layer essentially served as a boundary that shaped the hexagonal material into cubic form.

"Our cubic GaN does not have an internal electric field that separates the charge carriers -- the holes and electrons," said Richard Liu, a member of Bayram's team. "So, they can overlap and when that happens, the electrons and holes combine faster to produce light," he added.

The team believes their cubic GaN method may lead to LEDs free from the "droop" phenomenon that has plagued the LED industry for years.

For green, blue, or ultra-violet LEDs, their light-emission efficiency declines as more current is injected, which is characterised as "droop".

The study was published recently in the journal Applied Physics Letters.

--IANS

vr/ask/vm

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Jul 30 2016 | 5:24 PM IST

Next Story