The system called SDSS 1557 consists of the remains of shattered asteroids orbiting a double sun consisting of a white dwarf and a brown dwarf, researchers said.
The discovery led by researchers at University College London (UCL) in the UK is remarkable because the debris appears to be rocky and suggests that terrestrial planets like Tatooine might exist in the system.
To date, all exoplanets discovered in orbit around double stars are gas giants, similar to Jupiter, and are thought to form in the icy regions of their systems.
These elements were identified as the debris flowed from its orbit onto the surface of the star, polluting it temporarily with at least 1.1 trillion tonnes of matter, equating it to an asteroid at least four kilometres in size.
"Building rocky planets around two suns is a challenge because the gravity of both stars can push and pull tremendously, preventing bits of rock and dust from sticking together and growing into full-fledged planets," lead author Jay Farihi from UCL said.
The discovery came as a complete surprise as the team assumed the dusty white dwarf was a single star but Steven Parsons from University of Sheffield in the UK, an expert in double star (or binary) systems noticed the tell-tale signs.
"We know of thousands of binaries similar to SDSS 1557 but this is the first time we have seen asteroid debris and pollution.
The team studied the binary system and the chemical composition of the debris by measuring the absorption of different wavelengths of light or 'spectra', using the Gemini Observatory South telescope and the European Southern Observatory Very Large Telescope, both located in Chile.
"Any metals we see in the white dwarf will disappear within a few weeks, and sink down into the interior, unless the debris is continuously flowing onto the star. We will be looking at SDSS 1557 next with Hubble, to conclusively show the dust is made of rock rather than ice," said Professor Boris Gansicke from University of Warwick in the UK.
Disclaimer: No Business Standard Journalist was involved in creation of this content
