Cell therapy could improve brain function in Alzheimer's patients: Study

One type of neuron, called inhibitory interneuron, is particularly important for managing brain rhythms

Alzheimer
One of the most prominent features of Alzheimer's is a progressive decline in language
Press Trust of India Washington
Last Updated : Mar 17 2018 | 7:17 PM IST

Transplanting a special type of neuron into the brain may restore cognitive functions in patients diagnosed with Alzheimer's, a study has found.

Like a great orchestra, your brain relies on the perfect coordination of many elements to function properly. And if one of those elements is out of sync, it affects the entire ensemble.

In Alzheimer's disease, for instance, damage to specific neurons can alter brainwave rhythms and cause a loss of cognitive functions.

One type of neuron, called inhibitory interneuron, is particularly important for managing brain rhythms, said researchers at Gladstone Institutes in the US.

In the study, published in the journal Neuron, the scientists uncovered the therapeutic benefits of genetically improving these interneurons and transplanting them into the brain of a mouse model of Alzheimer's disease.

Interneurons control complex networks between neurons, allowing them to send signals to one another in a harmonised way. You can think of inhibitory interneurons as orchestra conductors.

They create rhythms in the brain to instruct the players - excitatory neurons - when to play and when to stop.

An imbalance between these two types of neurons creates disharmony and is seen in multiple neurological and psychiatric disorders, including Alzheimer's disease, epilepsy, schizophrenia, and autism.

"We took advantage of the fact that transplanted interneurons can integrate remarkably well into new brain tissues, and that each interneuron can control thousands of excitatory neurons," said Jorge Palop from Gladstone Institute.

"These properties make interneurons a promising therapeutic target for cognitive disorders associated with brain rhythm abnormalities and epileptic activity," Palop said.

First, the scientists had to overcome a significant challenge. When they transplanted regular interneurons, they saw no beneficial effects, presumably because Alzheimer's disease creates a toxic environment in the brain.

The researchers then genetically boosted the activity of inhibitory interneurons by adding a protein called Nav1.1.

They discovered that the interneurons with enhanced function were able to overcome the toxic disease environment and restore brain function.

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Mar 17 2018 | 7:17 PM IST

Next Story