Turns out, there's more to a material used for decades to colour food items than meets the eye.
Researchers at Georgia Institute of Technology described how a class of water soluble liquid crystals, called lyotropic chromonic liquid crystals, exhibited unexpected characteristics that could be harnessed for use in sensors and other potential applications.
"We were seeking to understand the aggregation and phase behavior of these plank-like molecules as a function of temperature and concentration," said researcher Karthik Nayani. "When observed under crossed polarizers in an optical microscope, liquid crystals can exhibit beautiful textures that hint toward how the molecules themselves are arranged."
To answer some fundamental questions pertaining to the material's phase behavior, the researchers used the microscopes to observe the molecules' textures when they were confined to droplets known as tactoids.
"Surprisingly, we found a configuration that hasn't been seen before in the 70 years that people have been studying liquid crystals," said researcher Mohan Srinivasarao. "Historically, liquid crystals in tactoids conform to what is known as a bipolar and a bipolar configuration with a twist. At lower concentrations, we found that these liquid crystals arrange in a concentric fashion, but one that appears to be free of a singular defect."
The researchers then used a simple model of the aggregation behavior of these molecules to explain these surprising results. Further, spectroscopic experiments using polarized Raman microscopy were performed to confirm their findings.
These new findings add to the growing understanding of how chromonic liquid crystals could be used in sensing applications, Srinivasarao said. The crystals are water soluble and respond dramatically to being confined to certain patterns -- such as tactoidal droplets -- concentrations, and temperatures. The material's responsiveness to altering its environment could potentially be used to sense the chirality -- or "handedness" -- of molecules, Srinivasarao said.
"These materials don't have a chiral center but they exhibit a chiral structure," Srinivasarao said. "That in itself is very interesting."
The study appears in the journal Proceedings of the National Academy of Sciences.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
