Scarred tissues turned into beating heart cells

Image
ANI Washington
Last Updated : Feb 13 2014 | 12:35 PM IST

In a new study, researchers have turned cells common in scar tissue into colonies of beating heart cells.

The findings by biomedical engineers from the University of Michigan could advance the path toward regenerating tissue that's been damaged in a heart attack.

Previous work in direct reprogramming, jumping straight from a cell type involved in scarring to heart muscle cells, has a low success rate. But Andrew Putnam, an associate professor of biomedical engineering and head of the Cell Signaling in Engineered Tissues Lab, thinks he knows at least one of the missing factors for better reprogramming.

"Many reprogramming studies don't consider the environment that the cells are in - they don't consider anything other than the genes," he said.

"The environment can dictate the expression of those genes," Putnam said.

To explore how the cells' surroundings might improve the efficiency of reprogramming, Yen Peng Kong, a post-doctoral researcher in the lab, attempted to turn scarring cells, or fibroblasts, into heart muscle cells while growing them in gels of varying stiffness. He and his colleagues compared a soft commercial gel with medium-stiffness fibrin, made of the proteins that link with platelets to form blood clots, and with high-stiffness collagen, made of structural proteins.

The fibroblasts came from mouse embryos. To begin the conversion to heart muscle cells, Kong infected the fibroblasts with a specially designed virus that carried mouse transgenes - genes expressed by stem cells.

Fooled into stem cell behavior, the fibroblasts transformed themselves into stem-cell-like progenitor cells. This transition, which would be skipped in direct reprogramming, encouraged the cells to divide and grow into colonies rather than remaining as lone rangers. The tighter community might have helped to ease the next transition, since naturally developing heart muscle cells are also close with their neighbours.

After seven days, Kong changed the mixture used to feed the cells, adding a protein that encourages the growth of heart tissue. This helped push the cells toward adopting the heart muscle identity. A few days later, some of the colonies were contracting spontaneously, marking themselves out as heart muscle colonies.

The transition was particularly successful in the fibrin and fibrin-collagen mixes, which saw as many as half of the colonies converting to heart muscle.

The team has yet to discover exactly what it is about fibrin that makes it better for supporting heart muscle cell. While most materials either stretch or weaken under strain, fibrin gets harder.

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Feb 13 2014 | 12:26 PM IST

Next Story