Enzyme that triggers most common form of vision loss identified

Image
IANS New York
Last Updated : Nov 28 2017 | 12:05 PM IST

Indian-origin researchers have identified an enzyme that serves as a critical trigger for the damaging inflammation that ultimately leads to macular degeneration, the leading cause of vision loss among the elderly.

The finding, published in the journal Nature Medicine, may allow doctors to halt the inflammation early on, potentially saving patients from blindness.

"Almost 200 million people in the world have macular degeneration. If macular degeneration were a country, it would be the eighth most populated nation in the world. That's how large a problem this is," said Jayakrishna Ambati from University of Virginia School of Medicine in the US.

"For the first time, we know in macular degeneration what is one of the very first events that triggers the system to get alarmed and start, to use an anthropomorphic term, hyperventilating. This overdrive of inflammation is what ultimately damages cells, and so, potentially, we have a way of interfering very early in the process," Ambati added.

Ambati and Nagaraj Kerur, also from University of Virginia, determined that the culprit is an enzyme called cGAS.

The enzyme plays an important role in the body's immune response to infections by detecting foreign DNA.

But the molecule's newly identified role in the "dry" form of age-related macular degeneration comes as wholly unexpected.

"It's really surprising that in macular degeneration, which, as far as we know, has nothing to do with viruses or bacteria, that cGAS is activated, and that this alarm system is turned on," Ambati said.

"This is what leads to the killing of the cells in the retina, and, ultimately, vision loss," Ambati said.

The researchers noted that cGAS may be an alarm not just for pathogens but for other harmful problems that warrant responses from the immune system.

The enzyme may also play important roles in conditions such as diabetes, lupus and obesity, and researchers already are working to create drugs that could inhibit its function.

"Because the target we're talking about is an enzyme, we could develop small molecules that could block it," Kerur said.

--IANS

gb/vm

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Nov 28 2017 | 11:58 AM IST

Next Story