In a significant find, a team of scientists from the Tata Institute of Fundamental Research (TIFR) here has found novel ways to detect a bare or naked "singularity" - the most extreme object in the universe.
When the fuel of a very massive star is spent, it collapses owing to its own gravitational pull and eventually becomes a very small region of arbitrarily high matter density, that is a "Singularity" where the usual laws of physics may breakdown.
If this "singularity" is hidden within an event horizon, which is an invisible closed surface from which nothing, not even light, can escape, then we call this object a black hole.
In such a case, we cannot see the "singularity" and we do not need to bother about its effects.
But what if the event horizon does not form?
To address this, Dr Chandrachur Chakraborty, Prashant Kocherlakota and Professor Sudip Bhattacharyya and Professor Pankaj Joshi -- in collaboration with a Polish team comprising Dr Mandar Patil and Professor Andrzej Krolak -- have shown that the precession frequency of a gyroscope orbiting a black hole or a naked "singularity" is sensitive to the presence of an event horizon.
The TIFR team has recently argued that the rate at which a gyroscope precesses (the precession frequency), when placed around a rotating black hole or a naked "singularity", could be used to identify this rotating object.
A gyroscope circling and approaching the event horizon of a black hole from any direction behaves increasingly 'wildly,' that is, it precesses increasingly faster, without a bound.
But, in the case of a naked "singularity", the precession frequency becomes arbitrarily large only in the equatorial plane, but being regular in all other planes.
The TIFR team has also found that the precession of orbits of matter falling into a rotating black hole or a naked "singularity" can be used to distinguish these exotic objects.
"This is because the orbital plane precession frequency increases as the matter approaches a rotating black hole, but this frequency can decrease and even become zero for a rotating naked singularity," the team noted in a paper appeared in the journal Physical Review D.
The finding could be used to distinguish a naked "singularity" from a black hole in reality, because the precession frequencies could be measured in X-ray wavelengths, as the infalling matter radiates X-rays.
--IANS
na/vm
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
