Researchers have demonstrated an algorithm-based automated solution that is comparable to and sometimes better than humans at correctly identifying fake news stories.
The system that identifies telltale linguistic cues in fake news stories could provide news aggregator and social media sites like Google News with a new weapon in the fight against misinformation.
An automated solution could be an important tool for sites that are struggling to deal with an onslaught of fake news stories, often created to generate clicks or to manipulate public opinion, Rada Mihalcea, the University of Michigan professor behind the project, said in a statement.
The new system successfully found fakes up to 76 per cent of the time, compared to a human success rate of 70 per cent, according to the study to be presented on August 24 at the International Conference on Computational Linguistics in Santa Fe, New Mexico.
The researchers believe that their linguistic analysis approach could also be used to identify fake news articles that are too new to be debunked by cross-referencing their facts with other stories.
The linguistic analysis approach analyses quantifiable attributes like grammatical structure, word choice, punctuation and complexity.
For the study, Mihalcea's team created its own data, crowdsourcing an online team that reverse-engineered verified genuine news stories into fakes.
This is how most actual fake news is created, Mihalcea said, by individuals who quickly write them in return for a monetary reward.
Study participants were paid to turn short, actual news stories into similar but fake news items, mimicking the journalistic style of the articles.
At the end of the process, the research team had a dataset of 500 real and fake news stories.
They then fed these labelled pairs of stories to an algorithm that performed a linguistic analysis, teaching itself distinguish between real and fake news.
Finally, the team turned the algorithms to a dataset of real and fake news pulled directly from the web, netting the 76 per cent success rate.
The details of the new system and the dataset that the team used to build it could be used by news sites or other entities to build their own fake news detection systems, Mihalcea said.
--IANS
gb/ksk
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
