Auroras occur on several planets within our solar system, and the brightest on Jupiter are 100 times brighter than those on Earth.
However, no auroras have yet been observed beyond Neptune.
A new study led by University of Leicester lecturer Dr Jonathan Nichols has shown that this phenomenon is not limited to our solar system.
Researchers found that processes strikingly similar to those which power Jupiter's auroras could be responsible for radio emissions detected from a number of objects outside our solar system.
In addition, the radio emissions are powerful enough to be detectable across interstellar distances - meaning that auroras could provide an effective way of observing new objects outside our solar system.
Auroras occur when charged particles in an object's magnetosphere collide with atoms in its upper atmosphere, causing them to glow. However, before hitting the atmosphere, these particles also emit radio waves into space.
It found that the radio emissions from a number of ultracool dwarfs may be caused in a very similar, but significantly more powerful, way to Jupiter's auroras.
"We have recently shown that beefed-up versions of the auroral processes on Jupiter are able to account for the radio emissions observed from certain "ultracool dwarfs" - bodies which comprise the very lowest mass stars - and "brown dwarfs" - 'failed stars' which lie in between planets and stars in terms of mass," Nichols said.
"These results strongly suggest that auroras do occur on bodies outside our solar system, and the auroral radio emissions are powerful enough - one hundred thousand times brighter than Jupiter's - to be detectable across interstellar distances," Nichols said in statement.
The study, which also involved researchers at the Center for Space Physics, Boston University, US, could have major implications for the detection of planets and objects outside our solar system which could not be discovered with other methods.
The radio emission could provide key information about the length of the planet's day, the strength of its magnetic field, how the planet interacts with its parent star and even whether it has any moons, researchers believe.
The study was published in the Astrophysical Journal.
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
