CERN scientists create antihydrogen atoms

Image
Press Trust of India London
Last Updated : Jan 26 2014 | 7:00 PM IST
CERN physicists have succeeded for the first time in producing a beam of antihydrogen atoms, an advance that brings scientists closer to solving the antimatter mystery.
Physicists from CERN's Atomic Spectroscopy and Collisions Using Slow Antiprotons (ASACUSA) experiment said they have produced at least 80 atoms of antihydrogen.
Primordial antimatter has so far never been observed in the universe, and its absence remains a scientific enigma.
Nevertheless, it is possible to produce significant amounts of antihydrogen in experiments at the Geneva-based European Organisation for Nuclear Research (CERN) by mixing antielectrons (positrons) and low energy antiprotons produced by the Antiproton Decelerator.
The spectra of hydrogen and antihydrogen are predicted to be identical, so any tiny difference between them would immediately open a window to new physics, and could help in solving the antimatter mystery.
It has been a puzzle to scientists why humans, stars and the universe are made of matter, rather than of antimatter.
With its single proton accompanied by just one electron, hydrogen is the simplest existing atom, and one of the most precisely investigated and best understood systems in physics.
Thus comparisons of hydrogen and antihydrogen atoms constitute one of the best ways to perform highly precise tests of matter/antimatter symmetry, researchers said.
Matter and antimatter annihilate immediately when they meet, so aside from creating antihydrogen, one of the key challenges for physicists is to keep antiatoms away from ordinary matter.
To do so, experiments take advantage of antihydrogen's magnetic properties (which are similar to hydrogen's) and use very strong non-uniform magnetic fields to trap antiatoms long enough to study them.
However, the strong magnetic field gradients degrade the spectroscopic properties of the (anti)atoms.
To allow for clean high-resolution spectroscopy, the ASACUSA collaboration developed an innovative set-up to transfer antihydrogen atoms to a region where they can be studied in flight, far from the strong magnetic field.
"Antihydrogen atoms having no charge, it was a big challenge to transport them from their trap," said Yasunori Yamazaki of RIKEN, Japan, a team leader of the ASACUSA collaboration.
"Our results are very promising for high-precision studies of antihydrogen atoms, particularly the hyperfine structure, one of the two best known spectroscopic properties of hydrogen.
"Its measurement in antihydrogen will allow the most sensitive test of matter/antimatter symmetry. We are looking forward to restarting this summer with an even more improved set-up," Yamazaki said in a statement.
The study was published in journal Nature Communications.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Jan 26 2014 | 7:00 PM IST

Next Story