The study by scientists at Columbia University Medical Center (CUMC) found that variations in FTO gene indirectly affect the function of the primary cilium, a little-understood hair-like appendage on brain and other cells.
Specific abnormalities of cilium molecules, in turn, increase body weight, in some instances, by affecting the function of receptors for leptin, a hormone that suppresses appetite.
The findings, made in mice, suggest that it might be possible to modify obesity through interventions that alter the function of the cilium.
"If our findings are confirmed, they could explain how common genetic variants in the gene FTO affect human body weight and lead to obesity," said study leader Rudolph L Leibel, the Christopher J Murphy Memorial Professor of Diabetes Research, professor of pediatrics and medicine, and co-director of the Naomi Berrie Diabetes Center at CUMC.
But it was not understood how alterations in FTO might contribute to obesity.
"Studies have shown that knocking out FTO in mice doesn't necessarily lead to obesity, and not all humans with FTO variants are obese," said Leibel.
"Something else is going on at this location that we were missing," Leibel added.
In experiments with mice, the CUMC team observed that as FTO expression increased or decreased, so did the expression of a nearby gene, RPGRIP1L.
"Aberrations in the cilium have been implicated in rare forms of obesity. But it wasn't clear how this structure might be involved in garden-variety obesity," said Leibel.
Leibel and his colleague, George Stratigopoulos, associate research scientist, hypothesised that common FTO variations in noncoding regions of the gene do not change its primary function, which is to produce an enzyme that modifies DNA and RNA.
Instead, they suspected that FTO variations indirectly affect the expression of RPGRIP1L.
Stratigopoulos created mice lacking one of their two RPGRIP1L genes, in effect, reducing but not eliminating the gene's function.
In a subsequent experiment, the CUMC team found that RPGRIP1L-deficient mice had impaired leptin signalling.
The study was published in the journal Cell Metabolism.
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
