Gen-next technology to print tiny phones into clothing

Image
Press Trust of India Melbourne
Last Updated : Apr 25 2014 | 1:19 PM IST
Your T-shirt is ringing! Scientists are working on a gen-next technology that could make cell phones so small, efficient and flexible that they could be printed on clothing.
Researchers from the Monash University, Australia, are investigating a new version of "spaser" technology that will allow the tiny printing to take place.
They modelled the world's first spaser (surface plasmon amplification by stimulated emission of radiation) to be made completely of carbon.
A spaser is effectively a nanoscale laser or nanolaser. It emits a beam of light through the vibration of free electrons, rather than the space-consuming electromagnetic wave emission process of a traditional laser.
Lead researcher Chanaka Rupasinghe said the modelled spaser design using carbon would offer many advantages.
"Other spasers designed to date are made of gold or silver nanoparticles and semiconductor quantum dots while our device would be comprised of a graphene resonator and a carbon nanotube gain element," Rupasinghe said.
"The use of carbon means our spaser would be more robust and flexible, would operate at high temperatures, and be eco-friendly.
"Because of these properties, there is the possibility that in the future an extremely thin mobile phone could be printed on clothing," said Rupasinghe.
Spaser-based devices can be used as an alternative to current transistor-based devices such as microprocessors, memory, and displays to overcome current miniaturising and bandwidth limitations, researchers said.
Researchers chose to develop the spaser using graphene and carbon nanotubes. They are more than a hundred times stronger than steel and can conduct heat and electricity much better than copper. They can also withstand high temperatures.
Their research showed for the first time that graphene and carbon nanotubes can interact and transfer energy to each other through light.
These optical interactions are very fast and energy-efficient, and so are suitable for applications such as computer chips.
"Graphene and carbon nanotubes can be used in applications where you need strong, lightweight, conducting, and thermally stable materials due to their outstanding mechanical, electrical and optical properties. They have been tested as nanoscale antennas, electric conductors and waveguides," Chanaka said.
Chanaka said a spaser generated high-intensity electric fields concentrated into a nanoscale space. These are much stronger than those generated by illuminating metal nanoparticles by a laser in applications such as cancer therapy.
The finding was published in the journal ACS Nano.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Apr 25 2014 | 1:19 PM IST

Next Story