Scientists in Japan will begin trying to grow human organs in animals after receiving government permission for the first study of its kind in the country.
The cutting-edge -- but controversial -- research involves implanting modified animal embryos with human "induced pluripotent stem" (iPS) cells that can be coaxed into forming the building blocks of any part of the body.
It is the first step in what researchers caution is a very long path towards a future where human organs for transplant could be grown inside animals.
The research led by Hiromitsu Nakauchi, a professor of genetics at Stanford University, is the first of its kind to receive government approval after Japan changed its rules on implanting human cells into animals.
Japan had previously required researchers to terminate animal embryos implanted with human cells after 14 days and prevented the embryos from being placed into animal wombs to develop.
But in March those restrictions were dropped, allowing researchers to seek individual permits for research projects.
"It took nearly 10 years, but we are now able to start the experiment," Nakauchi told AFP.
The research involves generating animal embryos -- mice, rats or pigs -- that lack a particular organ such as a pancreas.
The modified embryos are then implanted with human iPS cells that can grow into the missing pancreas.
The embryos would be transplanted into wombs where they could theoretically be carried to term with a functioning human pancreas.
Preliminary research has produced some promising signs, including the successful growth of mice pancreases in rats.
The pancreases, when transplanted back into mice, functioned successfully and controlled blood glucose levels in diabetic mice.
But other tests have been more complicated: researchers were able to grow mice kidneys in rats, but rat stem cells implanted in mice failed to take.
And even though the mice kidneys developed properly in rats, the rats died shortly after birth because of complications related to the way they were modified before receiving the mice stem cells.
Nakauchi said the newly approved study would help understand the obstacles in the field, and cautioned he was far from the eventual goal of trying to grow human organs in pigs.
"Although we have shown proof-of-concept studies using rodent models, to overcome the genetic distance between human and pig is not easy," he said.
"The study is just about to begin. Do not expect that we are generating human organs in a year or two."
"In a human-animal hybrid, half the DNA in every cell would be human and the other half would be animal. In contrast, a human-animal chimera contains a mixture of human cells and animals cells."
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
