Researchers at Monash University and the University of Melbourne have used an anti-tank Javelin missile detector, more commonly used in warfare to detect the enemy, in a new test to rapidly identify malaria parasites in blood.
Scientists say the novel idea, published in the journal Analyst, could set a new gold standard for malaria testing.
The technique is based on Fourier Transform Infrared (FITR) spectroscopy, which provides information on how molecules vibrate.
The heat-seeking detector, which is coupled to an infrared imaging microscope, allowed the team to detect the earliest stages of the malaria parasite in a single red blood cell.
The infrared signature from the fatty acids of the parasites enabled the scientists to detect the parasite at an earlier stage, and crucially determine the number of parasites in a blood smear.
"Our test detects malaria at its very early stages, so that doctors can stop the disease in its tracks before it takes hold and kills. We believe this sets the gold standard for malaria testing," Wood said.
"There are some excellent tests that diagnose malaria. However, the sensitivity is limited and the best methods require hours of input from skilled microscopists, and that's a problem in developing countries where malaria is most prevalent," he said.
The disease, which is caused by the malaria parasite, kills 1.2 million people every year. Existing tests look for the parasite in a blood sample, researchers said.
However the parasites can be difficult to detect in the early stages of infection. As a result the disease is often spotted only when the parasites have developed and multiplied in the body.
Professor Leann Tilley from the University of Melbourne said the test could make an impact in large-scale screening of malaria parasite carriers who do not present the classic fever-type symptoms associated with the disease.
