The same platform will also carry out the world's first demonstration of X-ray navigation in space.
The agency plans to launch the two-in-one Neutron Star Interior Composition Explorer (NICER) aboard SpaceX CRS-11, a cargo resupply mission to the International Space Station (ISS) to be launched aboard a Falcon 9 rocket on Saturday.
The launch was earlier planned for June 1, but was delayed due to poor weather.
About a week after its installation, this one-of-a-kind investigation will begin observing neutron stars, the densest objects in the universe.
Due to their extreme nature, neutron stars and pulsars have engendered a great deal of interest since their existence was proposed in 1939 and then discovered in 1967.
These objects are the remnants of massive stars that, after exhausting their nuclear fuel, exploded and collapsed into super-dense spheres.
Their intense gravity crushes an astonishing amount of matter - often more than 1.4 times the content of the Sun or at least 460,000 Earths - into city-sized orbs, creating stable, yet incredibly dense matter not seen anywhere else in the universe.
"The nature of matter under these conditions is a decades-old unsolved problem," said Keith Gendreau, a scientist at NASA's Goddard Space Flight Centre in the US.
"Theory has advanced a host of models to describe the physics governing the interiors of neutron stars. With NICER, we can finally test these theories with precise observations," said Gendreau.
Although neutron stars emit radiation across the spectrum, observing them in the energetic X-ray band offers the greatest insights into their structure and the high-energy phenomena that they host, including starquakes, thermonuclear explosions and the most powerful magnetic fields known in the cosmos.
At these locations, the objects' intense magnetic fields emerge from their surfaces and particles trapped within these fields rain down and generate X-rays when they strike the stars' surfaces.
In pulsars, these flowing particles emit powerful beams of radiation from the vicinity of the magnetic poles.
On Earth these beams of radiation are observed as flashes of radiation ranging from seconds to milliseconds depending on how fast the pulsar rotates.
Since these pulsations are predictable, they can be used as celestial clocks, providing high-precision timing, like the atomic-clock signals supplied through the Global Positioning System (GPS).
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
