Neurons that tell good from bad identified

Image
Press Trust of India Washington
Last Updated : May 03 2015 | 5:48 PM IST
MIT scientists, including one of Indian-origin, have identified two populations of neurons in the amygdala that process positive and negative emotions.
These neurons relay the information to other brain regions that initiate the appropriate behavioural response, said neuroscientists from Massachusetts Institute of Technology's Picower Institute for Learning and Memory.
"How do we tell if something is good or bad? Even though that seems like a very simple question, we really don't know how that process works," said senior study author Kay Tye, the Whitehead Career Development Assistant Professor in the Department of Brain and Cognitive Sciences.
"This study tells us that streams of information are hard-wired and are separated into good and bad at the level of the amygdala," Tye added.
The findings could also help scientists to better understand how mental illnesses such as depression arise, she said.
The neurons of the basolateral amygdala are intermingled, making it difficult to distinguish which populations might be involved in different functions.
Tye and colleagues suspected they might be able to distinguish populations of neurons that respond to different emotions based on their targets elsewhere in the brain.
Previous studies had suggested that some of these neurons project to the nucleus accumbens, which plays a role in reward learning, while others send information to another part of the amygdala known as the centromedial amygdala.
To identify these populations, the researchers delivered green and red fluorescent microspheres called retrobeads to the target cells in the nucleus accumbens and centromedial amygdala, respectively.
These spheres travelled backwards until they reached the neurons of the basolateral amygdala, clearly marking two distinct populations.
After labelling these neurons, the researchers analysed amygdala activity as the mice learned either a fear-conditioning task or a reward task.
In the fear-conditioning task, the mice learned to associate a tone with a foot shock, and in the reward task the tone was paired with a drink of sugary water.
The next day, the researchers measured the strength of the connections coming into the two populations, which carry sensory information to the amygdala.
They found that basolateral amygdala neurons that connect to the nucleus accumbens receive stronger input after reward learning, but their inputs are weakened after fear learning. Neurons that connect to the centromedial amygdala show the opposite response.
The results suggest that these two populations essentially function as a gate for sensory information coming into the amygdala, said Graduate student Praneeth Namburi, paper's co-lead author.
The researchers then found that by shutting down the pathway to the fear circuit, they not only impaired fear learning, but also enhanced reward learning.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: May 03 2015 | 5:48 PM IST

Next Story