Researchers propose a new kind of engine for producing energy based on the Leidenfrost effect - a phenomenon which happens when a liquid comes into near contact with a surface much hotter than its boiling point.
This effect is commonly seen in the way water appears to skitter across the surface of a hot pan, but it also applies to solid carbon dioxide, commonly known as dry ice.
Blocks of dry ice are able to levitate above hot surfaces protected by a barrier of evaporated gas vapour.
This is the first time the Leidenfrost effect has been adapted as a way of harvesting energy.
The technique has exciting implications for working in extreme and alien environments, such as outer space, where it could be used to make long-term exploration and colonisation sustainable by using naturally occurring solid carbon dioxide as a resource rather than a waste product.
Dry ice may not be abundant on Earth, but increasing evidence from NASA's Mars Reconnaissance Orbiter (MRO) suggests it may be a naturally occurring resource on Mars as suggested by the seasonal appearance of gullies on the surface of the red planet.
"Carbon dioxide plays a similar role on Mars as water does on Earth. It is a widely available resource which undergoes cyclic phase changes under the natural Martian temperature variations," said Dr Rodrigo Ledesma-Aguilar, one of the co-authors of the research.
"Perhaps future power stations on Mars will exploit such a resource to harvest energy as dry-ice blocks evaporate, or to channel the chemical energy extracted from other carbon-based sources, such as methane gas.
"One thing is certain; our future on other planets depends on our ability to adapt our knowledge to the constraints imposed by strange worlds, and to devise creative ways to exploit natural resources that do not naturally occur here on Earth," Ledesma-Aguilar said.
"The working principle of a Leidenfrost-based engine is quite distinct from steam-based heat engines; the high-pressure vapour layer creates freely rotating rotors whose energy is converted into power without the need of a bearing, thus conferring the new engine with low-friction properties," Wells said.
The study was published in the journal Nature Communications.
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
