A person diagnosed with glioblastoma multiforme - a type of brain tumour - typically survives 15 months, if given the best care, researchers said.
"This is a disease for which there has been practically no improvement in treatment outcome for years," said senior author Inder Verma, professor at the Salk Institute.
To study how glioblastoma multiforme spreads, researchers including Rajesh Narasimamurthy focused on a transcription factor called nuclear factor kB (or NF-kB), a protein that binds to DNA and controls the fate of gene expression for a particular set of genes.
Researchers started with a mouse model of glioblastoma multiforme and used genetic tools to manipulate cells into shutting down NF-kB activity in two ways.
They ramped up the presence of a protein called IkBaM, which inhibits NF-kB activity and eliminated an enzyme that increases NF-kB activity.
With less NF-kB activity, tumour growth slowed and mice lived significantly longer.
However, while these genetic experiments demonstrated the role of NF-kB in glioblastoma multiforme, they are not a feasible treatment in humans.
A tumour changes the environment of its surroundings to make it easier for cancer cells to thrive, Verma said.
Instead of using genetic tools, researchers sought to treat the brain tumours in a way that also changed the tumour microenvironment.
The scientists fed mice a peptide (called NBD) that is known to block NF-kB activity when NF-kB is triggered by cytokines (proteins produced by the immune system).
Treating mice with the NBD peptide doubled their typical survival time compared to mice that did not get the NBD peptide.
Curbing NF-kB activity can be tricky because NF-kB has many important roles - it helps regulate inflammation, cell survival and immunity among many other functions in the cell.
"The ultimate goal is to block NF-kB, but because it turns on many genes - at least 100 - our aim became finding the handful of genes that directly affect tumour growth," said Verma.
Scientists tracked which genes were influenced by NF-kB and found that targeting the Timp1 gene slowed tumour growth and increased survival time in mice by few months.
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
