Researchers from the Laboratoire de meteorologie dynamique in France show that Pluto's peculiar insolation and atmosphere favour nitrogen condensation near the equator, in the lower altitude regions, leading to an accumulation of ice at the bottom of Sputnik Planum, a vast topographic basin.
Through their simulations, they also explain the surface distribution and atmospheric abundance of other types of volatiles observed on Pluto.
Among the types of ice covering Pluto's surface, nitrogen is the most volatile: when it sublimes (at minus 235 degrees Celsius), it forms a thin atmosphere in equilibrium with the ice reservoir at the surface.
Methane frost also appears all over the northern hemisphere, except at the equator, while carbon monoxide ice in smaller amounts was only detected in Sputnik Planum.
Until now, the distribution of Pluto's ice remained unexplained.
To better understand the physical processes at work on Pluto, the researchers developed a numerical thermal model of the surface of the dwarf planet able to simulate the nitrogen, methane and carbon monoxide cycles over thousands of years, and compared the results with the observations made by the New Horizons spacecraft.
At the bottom of the basin, the pressure of the atmosphere - and therefore of gaseous nitrogen - increases, and the corresponding frost temperature is higher than outside the basin, allowing nitrogen to preferably condense into ice.
Simulations show that the nitrogen ice inevitably accumulates in the basin, thus forming a permanent nitrogen reservoir, as observed by New Horizons.
The numerical simulations also describe the methane and carbon monoxide cycles.
Because of its volatility similar to that of nitrogen, carbon monoxide ice is entirely sequestered with nitrogen in the basin, in keeping with the New Horizons measurements.
The model shows that pure methane ice seasonally covers both hemispheres, in agreement with New Horizons data.
This scenario shows that there is no need for an internal reservoir of nitrogen ice to explain the formation of the Sputnik Planum glacier, as suggested by previous studies.
The research was published in the journal Nature.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
