'Poisoning' corrosion brings stainless magnesium closer

Image
Press Trust of India Melbourne
Last Updated : Aug 19 2013 | 6:30 PM IST
Scientists have found a novel way to dramatically reduce the corrosion rate of magnesium - the lightest structural metal.
The discovery could have major implications for the aerospace, automotive and electronics industries.
Weighing in at two thirds less than aluminium, magnesium is the lightest structural metal. It has many potential industrial applications, but uptake is severely restricted by its poor resistance to corrosion.
Identification of methods to restrict magnesium corrosion is the first step in engineering such technology into functional alloys, researchers said.
For the first time, a group of researchers, led by Monash University's Associate Professor Nick Birbilis, have created a magnesium alloy with significantly reduced corrosion rates by adding a cathodic 'poison' - arsenic.
They found that the addition of very low levels of arsenic to magnesium retards the corrosion reaction by effectively 'poisoning' the reaction before it can complete.
Once magnesium is available in a more stainless, or corrosion-resistant, form wider use will lead to significant weight and energy savings in transportation industries.
It has been the subject of significant research efforts concentrating on developing light metals.
Associate Professor Birbilis, of the Monash Department of Materials Engineering, said the discovery would contribute to the birth of more 'stainless' magnesium products by exploiting cathodic poisons.
"This is a very important and timely finding. In an era of light-weighting for energy and emissions reductions, there is a great demand for magnesium alloys in everything from portable electronics to air and land transportation," Birbilis said.
"Magnesium products are rapidly evolving to meet the demands of industry, but presently are hindered by high corrosion rates. The arsenic effect we discovered is now being trialled as a functional additive to existing commercial alloys.
"Our breakthrough will help develop the next generation of magnesium products, which must be more stainless," Birbilis said.
The study was published in the journal Electrochemistry Communications.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Aug 19 2013 | 6:30 PM IST

Next Story