Pop music can make solar cells produce more electricity

Image
Press Trust of India London
Last Updated : Nov 11 2013 | 3:40 PM IST
Playing Lady Gaga may increase the efficiency of solar cells to produce electricity by as much as 40 per cent, a new study suggests.
The high frequencies and pitch found in pop and rock music cause vibrations that enhanced energy generation in solar cells containing a cluster of 'nanorods', leading to a 40 per cent increase in efficiency of the solar cells.
The study by scientists at Queen Mary University of London and Imperial College London has implications for improving energy generation from sunlight, particularly for the development of new, lower cost, printed solar cells.
The researchers grew billions of tiny rods (nanorods) made from zinc oxide, then covered them with an active polymer to form a device that converts sunlight into electricity.
Using the special properties of the zinc oxide material, the team was able to show that sound levels as low as 75 decibels - equivalent to a typical roadside noise or a printer in an office - could significantly improve the solar cell performance.
"After investigating systems for converting vibrations into electricity this is a really exciting development that shows a similar set of physical properties can also enhance the performance of a photovoltaic," said Dr Steve Dunn, co-author of the research paper.
Scientists had previously shown that applying pressure or strain to zinc oxide materials could result in voltage outputs, known as the piezoelectric effect.
However, the effect of these piezoelectric voltages on solar cell efficiency had not received significant attention.
"We thought the soundwaves, which produce random fluctuations, would cancel each other out and so didn't expect to see any significant overall effect on the power output," said James Durrant, Professor of Photochemistry at Imperial College London, who co-led the study.
"We tried playing music instead of dull flat sounds, as this helped us explore the effect of different pitches. The biggest difference we found was when we played pop music rather than classical, which we now realise is because our acoustic solar cells respond best to the higher pitched sounds present in pop music," he said.
The discovery could be used to power devices that are exposed to acoustic vibrations, such as air conditioning units or within cars and other vehicles.
"The whole device is extremely simple and inexpensive to produce as the zinc oxide was grown using a simple, chemical solution technique and the polymer was also deposited from a solution," co-author Dr Joe Briscoe also from Queen Mary's School of Engineering and Materials Science, said.
"The work highlights the benefits of collaboration to develop new and interesting systems and scientific understanding," Dunn added.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Nov 11 2013 | 3:40 PM IST

Next Story