The University of California, Berkeley (UC Berkeley) researchers used the upgraded Karl G Jansky Very Large Array in New Mexico to measure radio emissions from Jupiter's atmosphere in wavelength bands where clouds are transparent.
They were able to see as deep as 100 kilometres below the cloud tops, a largely unexplored region where clouds form.
The planet's thermal radio emissions are partially absorbed by ammonia gas. Based on the amount of absorption, the researchers could determine how much ammonia is present and at what depth.
These studies also will shed light on similar processes occurring on other giant planets in our solar system and on newly discovered giant exoplanets around distant stars.
"We in essence created a three-dimensional picture of ammonia gas in Jupiter's atmosphere, which reveals upward and downward motions within the turbulent atmosphere," said Imke de Pater, a professor at UC Berkeley.
The radio map shows ammonia-rich gases rising into and forming the upper cloud layers: an ammonium hydrosulfide cloud at a temperature near minus 73 degrees Celsius and an ammonia-ice cloud in about minus 113 degrees Celsius. These clouds are easily seen from Earth by optical telescopes.
The map also shows that hotspots - so-called because they appear bright in radio and thermal infrared images - are ammonia-poor regions that encircle the planet like a belt just north of the equator.
Between these hotspots are ammonia-rich upwellings that bring ammonia from deeper in the planet.
"With radio, we can peer through the clouds and see that those hotspots are interleaved with plumes of ammonia rising from deep in the planet, tracing the vertical undulations of an equatorial wave system," said Michael Wong of UC Berkeley.
"We now see high ammonia levels like those detected by Galileo from over 100 kilometres deep, where the pressure is about eight times Earth's atmospheric pressure, all the way up to the cloud condensation levels," de Pater said.
The observations are being reported just a month before the July 4 arrival at Jupiter of NASA's Juno spacecraft, which plans, in part, to measure the amount of water in the deep atmosphere where the Very Large Array looked for ammonia.
The study was published in the journal Science.
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
