Synthetic virus may lead to more effective smallpox vaccine

Image
Press Trust of India Toronto
Last Updated : Jan 21 2018 | 2:35 PM IST
Scientists have created a synthetic horsepox virus that could lead to the development of a more effective vaccine against smallpox.
The discovery demonstrates how techniques based on the use of synthetic DNA can be used to advance public health measures.
Researchers from University of Alberta in Canada produced an infectious horsepox virus, which they synthetically reconstructed using a published genome sequence and DNA fragments manufactured entirely by chemical methods.
The team went on to show that the synthetic horsepox virus could provide vaccine protection in a mouse model of poxvirus infection.
"This application of synthetic DNA technology has the potential to revolutionise how we manufacture complex biologicals including recombinant viruses," said David Evans, professor at University of Alberta.
"These methods advance the capacity to produce next- generation vaccines and offer special promise as a tool for constructing the complicated synthetic viruses that will likely be needed to treat cancer," said Evans.
The synthesised horsepox virus is the largest virus assembled to date using chemically synthesised DNA.
Horsepox - an equine disease caused by horsepox virus - is not a hazard to humans. It is closely related to vaccinia virus, the virus that was used as a vaccine to eradicate human smallpox 40 years ago.
While there have been no cases of naturally occurring smallpox since 1977, it remains a concern to public health agencies.
Current smallpox vaccines are used to protect first responders and military service members but are rarely used except in special circumstances. Due to the toxicity of most modern smallpox vaccines, Canada and the US have long discontinued immunising whole populations, as was the policy prior to smallpox eradication.
Researchers had previously used more traditional recombinant DNA technologies to engineer a vaccinia virus with the aim of improving the treatment for bladder cancer.
The virus is an oncolytic virus, which means it was modified to selectively kill rapidly-dividing cancer cells while remaining safe for surrounding healthy cells.
In pre-clinical models these viruses can infect and kill cancer cells, while promoting the development of an immune response that is needed to prevents the cancer from returning.
However, future generations of oncolytic viruses will require a greater degree of modification than is possible using older technologies.
Synthetic biology offers a powerful tool for manufacturing these more complicated biological therapeutics.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Jan 21 2018 | 2:35 PM IST

Next Story