Researchers at the US Department of Energy's Oak Ridge National Laboratory (ORNL) developed the method to create air-stable water droplet networks known as droplet interface bilayers.
These interconnected water droplets have many roles in biological research because their interfaces simulate cell membranes. Cumbersome fabrication methods, however, have limited their use.
"The way they've been made since their inception is that two water droplets are formed in an oil bath then brought together while they're submerged in oil," said ORNL's Pat Collier, who led the new study published in the Proceedings of the National Academy of Sciences.
Instead of injecting water droplets into an oil bath, the ORNL research team experimented with placing the droplets on a superhydrophobic surface infused with a coating of oil. The droplets aligned side by side without merging.
To the researchers' surprise, they were also able to form non-coalescing water droplet networks without including lipids in the water solution.
Scientists typically incorporate phospholipids into the water mixture, which leads to the formation of an interlocking lipid bilayer between the water droplets.
"When you have those lipids at the interfaces of the water drops, it's well known that they won't coalesce because the interfaces join together and form a stable bilayer," ORNL coauthor Jonathan Boreyko said.
The team's research found the unexpected effect is caused by a thin oil film that is squeezed between the pure water droplets as they come together, preventing the droplets from merging into one.
With or without the addition of lipids, the team's technique offers new insight for a host of applications.
Controlling the behaviour of pure water droplets on oil-infused surfaces is key to developing dew- or fog-harvesting technology as well as more efficient condensers, for instance.
"These bilayers can be used in anything from synthetic biology to creating circuits to bio-sensing applications," he said.
"For example, we could make a bio-battery or a signalling network by stringing some of these droplets together. Or, we could use it to sense the presence of airborne molecules," he added.
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
