Australia researchers find a new way to make quantum computers

IBM's quantum computer in the United States has 16 qubits

Guilherme Tos, Andrea Morello
Dr Guilherme Tosi (left) and Professor Andrea Morello at the UNSW quantum computing labs
Jeremy Wagstaff
Last Updated : Sep 07 2017 | 3:27 AM IST
Researchers in Australia have found a new way to build quantum computers which they say would make them dramatically easier and cheaper to produce at scale.

Quantum computers promise to harness the strange ability of subatomic particles to exist in more than one state at a time to solve problems that are too complex or time-consuming for existing computers.

Google, IBM and other technology companies are all developing quantum computers, using a range of approaches.

The team from the University of New South Wales say they have invented a new chip design based on a new type of quantum bit, the basic unit of information in a quantum computer, known as a qubit.

The new design would allow for a silicon quantum processor to overcome two limitations of existing designs: the need for atoms to be placed precisely, and allowing them to be placed further apart and still be coupled. Crucially, says project leader Andrea Mello, this so-called "flip-flop qubit" means the chips can be produced using the same device technology as existing computer chips. "This makes the building of a quantum computer much more feasible, since it is based on the same manufacturing technology as today's computer industry," Mello said.

That would allow chips for quantum computers to be mass-manufactured, a goal that has so far eluded other researchers.

IBM's quantum computer in the United States has 16 qubits, meaning it can only perform basic calculations. Google's computer has nine qubits.

A desktop computer runs at gigaflops. The world’s fastest supercomputer, China’s Sunway TaihuLight, runs at 93 petaflops, but relies on 10 million processing cores and uses massive amounts of energy.

In theory, even a small 30-qubit universal quantum computer could run at the equivalent of a classic computer operating at 10 teraflops.

The researchers' paper will be published in Nature Communications.

Laszlo Kish, a professor at Texas A&M University, said it was too early to say if the research was a breakthrough "but it may be a step in the proper direction" in solving some of the key obstacles to quantum computing.

One subscription. Two world-class reads.

Already subscribed? Log in

Subscribe to read the full story →
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

Next Story