The universe we inhabit burst into existence in an extraordinary event that initiated the Big Bang 13.8 billion years ago.
In the first fleeting fraction of a second, the universe expanded exponentially, stretching far beyond the view of today's best telescopes.
Also Read
Their data also represents the first images of gravitational waves, or ripples in space-time.
These waves have been described as the "first tremors of the Big Bang." Finally, the data confirm a deep connection between quantum mechanics and general relativity.
"This is really exciting. We have made the first direct image of gravitational waves, or ripples in space-time across the primordial sky, and verified a theory about the creation of the whole universe," said Chao-Lin Kuo, from Stanford University, and a co-leader of the BICEP2 collaboration.
These groundbreaking results came from observations by the BICEP2 telescope of the cosmic microwave background - a faint glow left over from the Big Bang.
Tiny fluctuations in this afterglow provide clues to conditions in the early universe.
For example, small differences in temperature across the sky show where parts of the universe were denser, eventually condensing into galaxies and galactic clusters.
Because the cosmic microwave background is a form of light, it exhibits all the properties of light, including polarisation.
"Our team hunted for a special type of polarisation called 'B-modes,' which represents a twisting or 'curl' pattern in the polarised orientations of the ancient light," said BICEP2 co-leader Jamie Bock, a professor of physics at Caltech and NASA's Jet Propulsion Laboratory (JPL).
Gravitational waves squeeze space as they travel, and this squeezing produces a distinct pattern in the cosmic microwave background.
Gravitational waves have a "handedness," much like light waves, and can have left- and right-handed polarisations.
"The swirly B-mode pattern is a unique signature of gravitational waves because of their handedness," Kuo said.
The team examined spatial scales on the sky spanning about one to five degrees.
They set up an experiment at the South Pole to take advantage of its cold, dry, stable air, which allows for crisp detection of faint cosmic light.
The researchers were surprised to detect a B-mode polarisation signal considerably stronger than many cosmologists expected.
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
)