No probe since NASA's Viking program in the late 1970s has explicitly searched for extraterrestrial life. Rather, the focus has been on finding water.
Saturn's icy moon Enceladus has a lot of water, but even if life does exist there in some microbial fashion, the difficulty for scientists on Earth is identifying those microbes from 790 million miles away.
Also Read
Enceladus has enormous geysers, venting water vapour through cracks in the moon's icy shell, regularly jet out into space.
When the Saturn probe Cassini flew by Enceladus in 2005, it spotted water vapour plumes in the south polar region blasting icy particles at nearly 2,000 kilometres per hour to an altitude of nearly 500 kilometres above the surface.
Scientists calculated that as much as 250 kilogrammes of water vapour were released every second in each plume.
Since those first observations, more than a hundred geysers have been spotted.
Water blasting out into space offers a rare opportunity, said Nadeau. While landing on a foreign body is difficult and costly, a cheaper and easier option might be to send a probe to Enceladus and pass it through the jets, where it would collect water samples that could possibly contain microbes.
Some strategies for demonstrating that a microscopic speck is actually a living microbe involve searching for patterns in its structure or studying its specific chemical composition.
"Looking at patterns and chemistry is useful, but I think we need to take a step back and look for more general characteristics of living things, like the presence of motion," he said.
To study the motion of potential microbes from Enceladus's plumes, Nadeau proposed using an instrument called a digital holographic microscope that has been modified specifically for astrobiology.
In digital holographic microscopy, an object is illuminated with a laser and the light that bounces off the object and back to a detector is measured.
This scattered light contains information about the intensity of the scattered light and about its phase - a property that can be used to tell how far the light travelled.
With the two types of information, a computer can reconstruct a 3D image of the object - one that can show motion through all three dimensions.
To study the technology's potential utility for analysing extraterrestrial samples, researchers obtained samples of water from the Arctic, which is sparsely populated with bacteria.
With holographic microscopy, Nadeau was able to identify organisms with population densities of just 1,000 cells per millilitre of volume, similar to what exists in some of the most extreme environments on Earth, such as subglacial lakes.
That low threshold for detection, coupled with the system's ability to test a lot of samples quickly (at a rate of about one millilitre per hour) and its few moving parts, makes it ideal for astrobiology, Nadeau said.
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
)