Covid virus infection changes functioning of host cell RNA, say scientists

The findings pave the way to novel treatments for Covid-19 and repurposing of known drugs, the researchers noted

virus, labs, coronavirus, bio weapons, research, biological warfare
"Some strains may be much more methylated than others. If so, they can proliferate better inside host cells," Briones said
IANS Sao Paulo
2 min read Last Updated : Nov 10 2022 | 4:13 PM IST

For the first time, scientists have shown that infection by Covid virus changes the functioning of host cell RNA, providing clues as to how different variants can escape the immune system, and serve as a basis for the development of novel treatments.

Researchers at Federal University of Sao Paulo (UNIFESP) in Brazil arrived at this conclusion by analyzing 13 datasets obtained during four studies of viral, human and animal cell RNA.

The study, published in Frontiers in Cellular and Infection Microbiology, examined the epitranscriptome of Vero cells (derived from monkeys) and human Calu-3 cells by direct RNA sequencing.

An epitranscriptome is the collection of biochemical modifications of cell RNA, such as methylation.

"Our first important finding in this study was that infection by SARS-CoV-2 increases the level of m6a, a type of methylation, in host cells compared with non-infected cells," Marcelo Briones, an author of the article, told Agencia FAPESP.

The study was a continuation of an earlier genomic analysis published in 2021, where the researchers analyzed the methylation pattern in SARS-CoV-2 virus.

"Methylation has two functions in viruses. It regulates protein expression, and it defends the virus against the action of interferon, a potent antiviral substance produced by the host organism," Briones said.

The team also discovered that different strains of the virus displayed variations in the sequences of nitrogenous bases in their nucleotides.

"Some strains may be much more methylated than others. If so, they can proliferate better inside host cells," Briones said.

After completing their investigation of how SARS-CoV-2 modifies m6A in host cells, the scientists' next step will be to analyse the stored data in search of a correlation between viral RNA methylation levels and the number of viruses released from each infected cell, known as viral burst size.

"The more methylated the viruses, the more they grow in the cell cytoplasm and the larger the burst size," Briones explained.

The findings pave the way to novel treatments for COVID-19 and repurposing of known drugs, the researchers noted.

--IANS

na/ksk/

(Only the headline and picture of this report may have been reworked by the Business Standard staff; the rest of the content is auto-generated from a syndicated feed.)

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

Topics :CoronavirusVirusespharmacy

First Published: Nov 10 2022 | 4:13 PM IST

Next Story