Stephen Hawking's prediction about black holes observed in lab

For many years, scientists believed that nothing could ever escape from a black hole - not even light

British astrophysicist Stephen Hawking. | Photo: Youtube
British astrophysicist Stephen Hawking. | Photo: Youtube
Press Trust of India Jerusalem
Last Updated : Aug 17 2016 | 7:45 PM IST
Scientists who created a virtual black hole in the lab claim to have observed for the first time a phenomenon predicted by English physicist Stephen Hawking more than 30 years ago according to which some particles can escape black holes.

Jeff Steinhauer, a physicist at the Israel Institute of Technology built a virtual black hole in the lab in order to prove that Hawking's theory of radiation emanating from black holes is correct - though his experiments are based on sound, rather than light.

Steinhauer said that he observed the quantum effects of Hawking radiation in his lab as part of a virtual black hole - which, if proven to be true, will be the first time it has ever been achieved.

For many years, scientists believed that nothing could ever escape from a black hole - not even light.

However in 1974, Stephen Hawking suggested particles, that are now called Hawking radiation, could escape black holes.

According to him if a particle and its antimatter appeared spontaneously at the edge of a black hole, one of the pair might be pulled into the black hole while the other escaped, taking some of the energy from the black hole with it.

This would explain why black holes grow smaller and eventually disappear.

However, since such emissions are feeble, no one has been able to measure Hawking radiation. Researchers have instead tried to build virtual black holes in labs to test the theory.

Steinhauer's experiment consisted of creating an entangled pair of phonons sitting inside a bit of liquid that had been forced to move very fast and then observing the action as one of the pair was pulled away as the liquid began to move faster than the speed of sound, while the other escaped, 'Phys.Org' reported.

The fluid was a Bose-Enistein condensate of rubidium-87 atoms. After repeating the experiment 4,600 times, Steinhauer became convinced that the particles were entangled, a necessity for a Hawking radiation analogue.

The research was published in the journal Nature Physics.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Aug 17 2016 | 7:22 PM IST

Next Story