Microbes in the digestive system have a big influence on human health and may play a role in the onset of disease throughout the body, claims a research.
According to the study conducted by the American Chemical Society, a way has been found to use chemical compounds to target and inhibit the growth of specific microbes in the gut associated with diseases without causing harm to other beneficial organisms.
The digestive system is crammed with trillions of bacteria, fungi, and other microbes that help process food. Recent studies suggested that the changes in these gut flora, or microbiome, may play a role in the onset of a host of diseases and conditions including obesity, diabetes, cancer, allergies, asthma, autism and multiple sclerosis.
Antibiotics can help regulate the microbiome, but bacterial resistance is on the rise. In addition, antibiotics can wipe out some of the organisms that contribute to a healthy microbiome, and the microbes that take their place can sometimes cause more harm than good.
Researchers have also investigated using probiotics and fecal transplants to resolve some of these problems. But to date, few have really looked at using non-microbicidal small molecules to alter the microbiome in a targeted way to improve health.
To help fill this gap, Daniel Whitehead, Kristi Whitehead and colleagues sought to use a chemical compound to precisely target and disrupt the metabolic processes of members of the Bacteroides genus, a group of bacteria commonly found in the gut that appear to be associated with the onset of type I diabetes in genetically susceptible individuals.
In laboratory studies, the researchers found that small concentrations of acarbose, a drug used to treat diabetes, significantly disrupted the activity of a group of proteins involved in the Starch Utilization System (Sus).
The model bacteria called Bacteroides thetaiotaomicron (Bt), as well as other Bacteroides members, have this system. With Sus inhibited, Bt couldn't metabolize a pair of complex carbohydrates that are not digested by humans once they reach the colon, but that are vital to the survival of the microbes.
As a result, the bacteria cannot grow. The team found that acarbose was specific, having similar effects on another Bacteroides bacteria, but little or no effect on other types of gut microbes.
The study appears in the journal ACS Chemical Biology.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
