Astronomers have revealed in a new study that the so-called 'Cocoon Galaxy' has a unique double-nucleus structural feature and shape.
After studying data from optical and radio telescopes based on the ground and in space, a team of astronomers determined that a galaxy known as NGC 4490 (and nicknamed the "Cocoon Galaxy" because of its shape) has "a clear double nucleus structure," according to their paper.
One nucleus can be seen in optical wavelengths. The other is hidden in dust and can only be seen in infrared and radio wavelengths.
The paper reporting the discovery is now online and has been accepted for publication in the Astrophysical Journal.
The first author is Allen Lawrence, who earned a master's degree in astronomy from Iowa State University in 2018 and continues to work with Iowa State astronomers.
Co-authors are Iowa State's Charles Kerton, an associate professor of physics and astronomy; and Curtis Struck, a professor of physics and astronomy; as well as East Tennessee State University's Beverly Smith, a professor of physics and astronomy.
Lawrence started the study in 2013 while taking astronomy classes at the University of Wisconsin-Madison. He had the chance to study one of two galaxy systems and picked NGC 4490, which is interacting with a smaller galaxy, NGC 4485. The system is about 20% the size of the Milky Way, located in the Northern Hemisphere and about 30 million light-years from Earth.
"I saw the double nucleus about seven years ago," Lawrence said, adding, "It had never been observed - or nobody had ever done anything with it before."
Some astronomers may have seen one nucleus with their optical telescopes. And others may have seen the other with their radio telescopes. But he said the two groups never compared notes to observe and describe the double nucleus.
The new paper says both nuclei are similar in size, mass and luminosity. It says both are similar in mass and luminosity to the nuclei observed in other interacting galaxy pairs. And, it says the double nucleus structure could also explain why the galaxy system is surrounded by an enormous plume of hydrogen.
"The most straightforward interpretation of the observations is that NGC 4490 is itself a late-stage merger remnant" of a much-earlier collision of two galaxies, the authors wrote. A merger could drive and extend the high level of star formation necessary to create such a large hydrogen plume.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
